Kollner T G, Lenk C, Zhao N, et al. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using S-adenosyl-L-methionine[J]. Plant Physiol,2010,153(4):1795.
[2]
Li L, Hou X, Tsuge T, et al. The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis[J]. Plant Cell Rep,2008,27(3):575.
[3]
Misako K, Kouichi M. Caffeine synthase and related methyltransferases in plants[J]. Front Biosci,2004,9:1833.
[4]
Pott M B, Hippauf F, Saschenbrecker S, et al. Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens[J]. Plant Physiol,2004,135(4):1946.
Dudareva N, Murfitt L M, Mann C J, et al. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers[J]. Plant Cell,2000,12(6):949.
[9]
Song J T, Koo Y J, Park J B, et al. The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses[J]. Mol Cells,2009,28(2):105.
[10]
Le Hir H, Nott A, Moore M J, et al. How introns influence and enhance eukaryotic gene expression[J]. Trends Biochem Sci,2003,28(4):215.
[11]
Proudfoot N J, Furger A, Dye M J, et al. Integrating mRNA processing with transcription[J]. Cell,2002,108(4):501.
[12]
Lewis J D, Izaurralde E. The role of the cap structure in RNA processing and nuclear export[J]. Eur J Biochem,1997,247(2):461.
[13]
Orphanides G, Reinberg D. A unified theory of gene expression[J]. Cell,2002,108(4):439.
[14]
Shore P, Sharrocks A D. The MADS-box family of transcription factors[J]. Eur J Biochem,1995,229(1):1.
[15]
Bae H, Herman E, Bailey B, et al. Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense[J]. Physiologia Plantarum,2005,125(1):114.
Shang X, Pan H, Li M, et al. Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine[J]. J Ethnopharmacol,2011,138(1):1.
[18]
Rahman A, Kang S C. In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb.[J]. Food Chem,2009,116(3):670.
[19]
Yuan Y, Song L, Li M, et al. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica Thunb[J]. BMC Genomics,2012,13:195.
[20]
Qu L J, Li S, Xing S F, et al. Methylation of phytohormones by the SABATH methyltransferases[J]. Chin Sci Bull, 2010, 55(21):2211.
[21]
Tieman D, Zeigler M, Schmelz E, et al. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate[J]. Plant J,2010,62(1):113.
[22]
Effmert U, Saschenbrecker S, Ross J, et al. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function[J]. Phytochemistry,2005,66(11):1211.
[23]
Ross J R, Nam K H, D\'Auria J C, et al. S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases[J]. Arch Biochem Biophys,1999,367(1):9.