全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NGR多肽修饰的脂质体及其抗肿瘤研究进展

Keywords: NGR多肽,NGR多肽修饰的脂质体,CD13受体,抗肿瘤

Full-Text   Cite this paper   Add to My Lib

Abstract:

NGR多肽是一种能与肿瘤新生血管内皮细胞上的CD13受体结合的靶向肽。将NGR多肽与脂质体相连接,得到NGR多肽修饰的脂质体。通过静脉注射该脂质体,NGR多肽能与肿瘤新生血管上的CD13受体结合,将脂质体定位于肿瘤组织,使得脂质体中的药物浓集于肿瘤部位,从而提高抗肿瘤效果。该文从NGR多肽入手,对NGR多肽的定义、NGR多肽修饰的脂质体、NGR多肽修饰的脂质体抗肿瘤的优势和不足、NGR多肽修饰的脂质体的最新研究方向等进行了综述,并对NGR多肽修饰的脂质体未来的研究进行了展望。

References

[1]  Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J]. J Controlled Release, 2000, 65(1/2):271.
[2]  Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therpy[J]. Mol Cancer, 2011(10):3.
[3]  Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science, 1998(279):377.
[4]  Riemann D, Kehlen A, Langner J. CD13——not just a maker in leukemia typing[J]. Immunol Today, 1999, 20(2):83.
[5]  Shipp M A, Look A T. Hematopoietic differentiation antigens that are membrane-associated enzymes:cutting is the key![J]. Blood, 1993, 82(4):1052.
[6]  Olsen J, Kokholm K, Noren O, et al. Structure and expression of aminopeptidase N[J]. Adv Exp Med Biol, 1997(421):47.
[7]  Look A T, Ashmun R A, Shapiro L H, et al. Human myeloid plasma membrane glycoprotein CD13 is identical to aminopeptidase N[J]. J Clin Invest, 1989, 83(4):1299.
[8]  Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis[J]. Cancer Res, 2000, 60(3):722.
[9]  Vanhensbergen Y, Broxterman H J, Hanemaaijer R, et al. Soluble aminopeptuudase N/CD13 inmalignant and nonmalignant effusions and intratumoral fluid[J]. Clin Cancer Res, 2002, 8(12):3747.
[10]  Buehler A, van Zandvoort M A, Stelt B J, et al. cNGR:a novel homing sequence for CD13/APN targeted molecular imaging of murine cardiac angiogenesis in vivo[J]. Arterioscler Thromb Vasc Biol, 2006, 26(12):2681.
[11]  Lahdenranta J, Sidman R L, Pasqualini R, et al. Treatment of hypoxia-induced retinopathy with targeted proapoptotic peptidomimetic in a mouse model of disease[J]. FASEB J, 2007, 21(12):3272.
[12]  Colombo G, Curnis F, De Mori G M, et al. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif[J]. Biol Chem, 2002, 277(49):47891.
[13]  Curnis F, Sacchi A, Borgna L, et al. Enhancement of tumor necrosis factor an antitumor immuno-therapeutic properties by targeted delivery to aminopeptidase n(CD13)[J]. Nat Biotechnol, 2000, 18(11):1185.
[14]  Corti A, Ponzoni M. Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drug[J]. Ann NY Acad Sci, 2004(1028):104.
[15]  Dunne M, Zheng J, Rosenblat J, et al. APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes[J]. J Control Release, 2011, 154(3):298.
[16]  周正源,唐海玲,徐宇虹.多肽靶向脂质体的表面配体修饰密度及其体内肿瘤靶向效果的研究[J].生物物理学报,2010,26(3):216.
[17]  Chen X M, Xun W, Yue H, et al. A comprison study of the targeting properties of NGR-liposomes and RGD-liposomes towards human umbilical vein endothelial cells[J]. J Chin Pharm Sci, 2009(18):162.
[18]  Curnis F, Sacchi A, Corti A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration[J]. J Clin Invest, 2002, 110(4):475.
[19]  Santoro A, Rimassa L, Sobrero A F, et al. Phase II study of NGR-hTNF, a selective vascular targeting agent,inpatients with metastatic colorectal cancer after failure of standard therapy[J]. Eur J Cancer, 2010, 46(15):2746.
[20]  Fabio P, Chiara B, Daniela D P, et al. Targeting liposomal chemotherapy via both tumor cell-speciic and tumor vasculature-specific ligands pdtentiates therapeutic efficacy[J]. Cancer Res, 2006(66):10073.
[21]  Luo L M, Huang Y, Zhao B X, et al. Anti-tumor and anti-angiogrnic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel[J]. Erials, 2013, 34(4):1102.
[22]  Curnis F, Arrigoni G, Sacchi A, et al. Differential binding of drugs containing the NGR motif to CD13 isforms in tumor vessels, epithelia, and myeloid cells[J]. Cancer Res, 2002, 62(3):867.
[23]  Negussie A H, Miller J L, Reddy G, et al. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome[J]. J Controlled Release, 2010, 142(2):265.
[24]  Curnis F, Sacchi A, Corti A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration[J]. J Clin Invest, 2002(110):475.
[25]  Pastorino F, Brignole C, Marimpietri D, et al. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy[J]. Cancer Res, 2003, 63(21):7400.
[26]  Curnis F, Gasparri A, Sacchi A, et al. Targeting delivery of IFNγ to tumor vessels uncouples antitumor from counterregulatory mechanisms[J]. Cancer Res, 2005, 65(7):2906.
[27]  Grifman M, Trepel M, Speece P, et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsides[J]. Mol Ther, 2001, 3(6):964.
[28]  Lei H, Cao P, Miao G, et al. Expression and functional characterization of tumor-targeted fusion protein composed of NGR peptide and 15-kDa actin fragment[J]. Appl Biochem Biotechnol, 2010, 162(4):988.
[29]  Zhang Y F, Xie S S, Hou X P. Study on proterties and biodistribution of PEG-immunoliposome with active carboxylic terminals[J]. Acta Pharm Sin, 2000, 35(11):854.
[30]  Dagar S, Sekosan M, Lee B S, et al. VIP receptors as molecular targets of breast cancer:implication for targeted imaging and drug delivery[J]. J Control Release, 2001, 74(1/3):129.
[31]  Zhang X B, Jin Y G, Xie Y, et al. Effect of RMP-7 and its derivatives on the transportation of liposomes into the brain[J]. Acta Pharm Sin, 2003, 38(11):867.
[32]  Takara K, Hatakeyama H, Ohga N, et al. Design of a dual-lignd system using a specific lignd and cell penetrating peptide,resulting in a synergistic effect on selectivity and cellular uptake[J]. Int J Pharm, 2010, 396(1/2):143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133