全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道菌群对中药糖苷类成分脱糖基代谢的研究进展

Keywords: 肠道菌群,中药糖苷类成分,脱糖基代谢

Full-Text   Cite this paper   Add to My Lib

Abstract:

中药糖苷类成分是中药中一类重要的活性物质,其药理活性、药代动力学特征及体内存在是目前研究的热点。糖苷类成分在生物体内代谢转化途径主要是由肠道菌群介导的脱糖基代谢,生成苷元后更易吸收入血并发挥药效。该文基于肠道菌群在中药糖苷类成分体内代谢及药效发挥中的重要作用,综述了肠道菌群中代谢中药糖苷类成分的主要糖苷酶,产生糖苷酶的主要菌属,以及代表性糖苷类成分的脱糖基代谢途径。并针对肠道菌群对中药糖苷类成分代谢研究过程中存在的问题进行了初步探讨。

References

[1]  Liu L, Deng Y X, Liang Y, et al. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase[J]. Planta Med,2010, 76(1):70.
[2]  Kawata Y, Hattori M, Akao T, et al. Formation of nitrogen-containery metabolites from geniposide and gardenoside by human intestinal bacteria[J]. Planta Med, 1991, 57(6) : 536.
[3]  Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide[J]. Biol Pharm Bull,1994, 17(12):1573.
[4]  Kang M J, Khanal T, Kim H G, et al. Role of metabolism by human intestinal microflora in geniposide-induced toxicity in HepG2 cells[J]. Arch Pharm Res, 2012, 35(4):733.
[5]  Matsumoto M, Ishige A, Yazawa Y, et al. Promotion of intestinal peristalsis by Bifidobacterium spp. capable of hydrolysing sennosides in mice[J]. PloS ONE, 2012, 7(2):e31700.
[6]  Takayama K, Matsui E, Kobayashi T, et al. High-performance liquid chromatographic determination and metabolic study of sennoside in daiokanzoto by mouse intestinal bacteria[J]. Chem Pharm Bull, 2011, 59(9):1106.
[7]  Tracey M Gloster, Johan P. Turkenburg divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora[J]. Chem Biol, 2008, 15(10):1058.
[8]  Knaup B, Kahle K, Erk T, et al. Human intestinal hydrolysis of phenol glycosides:a study with quercetin and p-nitrophenol glycosides using ileostomy fluid[J]. Mol Nutr Food Res, 2007, 51(11):1423.
[9]  Kim Y, Hollenbaugh J A, Kim D H, et al. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat[J]. PLoS ONE, 2011, 6(7):e21781.
[10]  Dabek M, McCrae S I, Stevens V J, et al. Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria[J]. FEMS Microbiol Ecol, 2008, 66(3):487.
[11]  Robert M S, Magnusson B M, Burezynski F J, et al. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications[J]. Clin Pharmacokinet, 2002, 41(10):751.
[12]  Marier J F, Vachon P, Gritsas A, et al. Metabolism and disposition of resveratrol in rats: extent of absoprtion, glucuronidation, and enterohepatic recirculation evidenced by a linked-art model[J]. J Pharmacol Exl Ther, 2002, 302(1):369.
[13]  Hyun Y J, Kim B, Kim D H. Cloning and characterization of ginsenoside ra1-hydrolyzing beta-D-xylosidase from bifidobacterium breve K-110[J]. J Microbiol Biotechnol, 2012, 22(4):535.
[14]  Petzellbauer I, Nidetzky B. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I:the properties of two themostable β-glycosidases[J]. Biotechnol Bioeng, 1999, 64(3):322.
[15]  Brigidi P, Vitali B, Swennen E, et al . Effects of probiotic administration upon the composition and enzymatic activity of human fecal microbiota in patients with irritable bowel syndrome of functional diarrhea[J]. Res Microbiol, 2001, 152(8):735.
[16]  De Oliveira I M, Henriques J A P, Bonatto D. In silico identification of a new group of specific bacterial and fungal nitroreduetase-like proteins[J]. Bioehem Biophys Res Commu, 2007, 355(4):919.
[17]  Chen H Z, Wang R F, Cerniglia C E. Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis[J]. Protein Expr Purif, 2004, 34(2):302.
[18]  Mountzouris K. Nutritional strategies targeting the beneficial modulation of the intestinal microflora with relevance to food safety: the role of probiotics and prebiotics[J]. Food Safty, 2007: 133.
[19]  Brigidi P, Vitali B, Swennen E, et al. Effects of probiotic administration upon the composition and enzymatic activity of human fecal microbiota in patients with irritable bowel syndrome or functional diarrhea[J]. Res Microbiol, 2001, 152(8):735.
[20]  Mroczynska M, Libudzisz Z. Beta-glucuonidase and beta-glucosidase activity of Lactobacillus and Enterococcus isolated from human feces[J]. Pol J Microbiol, 2010, 59(4):265.
[21]  Johansson M L, Molin G, Jeppsson B, et al. Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora[J]. Appl Environ Microbiol, 1993, 59(1): 15.
[22]  Miwa M, Horimoto T, Kiyohara M, et al. Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure[J]. Glycobiology, 2010, 20(11): 1402.
[23]  Isolauri E, Rautava S, Salminen S. Probiotics in the development and treatment of allergic disease[J]. Gastroenterol Clin North Am, 2012, 41(4):747.
[24]  Mater D D, Drouault-Holowacz S, Oozeer R, et al. Beta-galactosidase production by Streptococcus thermophilus is higher in the small intestine than in the caecum of human-microbiota-associated mice after lactose supplementation[J]. Br J Nutr, 2006, 96(1):177.
[25]  Cartmell A, McKee L S, Pe a M J, et al. The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the, 29(1):15.
[26]  Morrison J M, Wright C M, John G H. Identification, isolation and characterization of a novel azoreductase from Clostridium perfringens[J]. Anaerobe, 2012, 18(2):229.
[27]  Flores R, Shi J, Gail M H, et al. Assessment of the human faecal microbiota: I. measurement and reproducibility of selected enzymatic activities[J]. Eur J Clin Invest, 2012, 42(8):848.
[28]  An H M, Park S Y, Lee D K, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats[J]. Lipids Health Dis, 2011, 10:116.
[29]  Lee J E, Lee S, Sung J, et al. Analysis of human and animal fecal microbiota for microbial source tracking[J]. ISME J, 2011, 5(6):362.ontents of rabbit cecum[J]. Biosci Biotechnol Biochem, 2009, 73(7):1470.
[30]  Willing B P, Van Kessel A G. Intestinal microbiota differentially affect brush border enzyme activity and gene expression in the neonatal gnotobiotic pig[J]. J Anim Physiol Anim Nutr (Berl), 2009, 93(5):586.
[31]  Kuo L C, Wu R Y, Lee K T. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18[J]. Appl Microbiol Biotechnol, 2012, 94(5):1181.
[32]  Walle T, Browning A M, Steed L L, et al. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans[J]. J Nutr, 2005, 135(1):48.
[33]  Khan S, Pozzo T, Megyeri M, et al. Aglycone specificity of thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis[J]. BMC Biochem, 2011, 12(1):11.
[34]  Shim S M, Kwon H. Metabolites of amygdalin under simulated human digestive fluids[J]. Int J Food Sci Nutr, 2010, 61(8):770.
[35]  Chang-Liao W L, Chien C F, Lin L C, et al. Isolation of gentiopicroside from Gentianae Radix and its pharmacokinetics on liver ischemia/reperfusion rats[J]. J Ethnopharmacol, 2012, 141(2):668.
[36]  Akao T. Effect of pH on metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by collected human intestinal flora[J]. Biol Pharm Bull, 2001, 24(10):1108.
[37]  Yang J, Qian D W, Jiang S, et al. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS[J]. J Chromatogr B, 2012, 898(1):95.
[38]  Liu Q, Lu L, Xiao M. Cell surface engineering of α-L-rhamnosidase for naringin hydrolysis[J]. Bioresour Technol, 2012, 123:144.
[39]  Ichinose H, Fujimoto Z, Kaneko S. Characterization of an α-L-rhamnosidase from Streptomyces avermitilis[J]. Biosci Biotechnol Biochem, 2013, 77(1):120735.
[40]  Feng B, Hu W, Ma B P, et al. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata[J]. Appl Microbiol Biotechnol, 2007, 76(6):1329.
[41]  Suryani, Kimura T, Sakka K, et al. Sequencing and expression of the gene encoding the Clostridium stercorarium beta-xylosidase Xyl43B in Escherichia coli[J]. Biosci Biotechnol Biochem, 2004, 68(3):609.
[42]  Yang J K, Yoon H J, Ahn H J, et al. Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase[J]. J Mol Biol, 2004, 335(1):155.
[43]  Yang C H, Yang S F, Liu W H. Production of xylooligosaccharides from xylans by extracellular xylanasesfrom Thermobifida fusca[J]. J Agric Food Chem, 2007, 55(10):3955.
[44]  Temuujin U, Chi W J, Park J S, et al. Identification and characterization of a novel β-galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium[J]. J Microbiol, 2012, 50(6):1034.
[45]  Kadiyala V, Nadeau L J, Spain J C. Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols[J]. Appl Environ Microbiol, 2003, 69(11):6520.
[46]  De Moreno de LeBlanc A, Perdigón G. Reduction of beta-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model[J]. Biocell, 2005
[47]  Trinh H T, Joh E H, Kwak H Y, et al. Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice[J]. Acta Pharmacol Sin, 2010, 31(6):718.
[48]  Sanugul K, Akao T, Li Y, et al. Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond[J]. Biol Pharm Bull, 2005, 28(9): 1672.
[49]  Braune A , Blaut B. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium[J]. Environ Microbiol, 2011, 13(2): 482.
[50]  Liu H, Wang K, Tang Y, et al. Structure elucidation of in vivo and in vitro metabolites of mangiferin[J]. J Pharm Biomed Anal, 2011, 55(5):1075.
[51]  Li L, Luo G A, Liang Q L, et al. Rapid qualitative and quantitative analyses of Asian ginseng in adulterated American ginseng preparations by UPLC-Q-TOF-MS[J]. J Pharm Biomed Anal, 2010, 52 (1):66.
[52]  Jung I H, Lee J H, Hyun Y J, et al. Metabolism of ginsenoside Rb1 by human intestinal microflora and cloning of its metabolizing β-D-glucosidase from Bifidobacterium longum H-1[J]. Biol Pharm Bull, 2012,35(4):573.
[53]  Bae E A, Han M J, Choo M K, et al. Metabolism of 20(S)-and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities[J]. Biol Pharm Bull, 2002, 25(1): 58.
[54]  Lee J, Lee E, Kim D H, et al. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration[J]. J Ethnopharmacol, 2009, 122(1):143.
[55]  Bae E A, Shin J E, Kim D H. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect[J]. Biol Pharm Bull, 2005, 28(10):1903.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133