Zuo Y, Chen Z, Kondo K. et al. DNA Barcoding of Panax species[J]. Planta Med, 2011, 77: 182.
[2]
Luo H M, Sun C, Sun Y Z, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12: S5.
[3]
Hong C P, Lee S J, Park J Y, et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences[J]. Mol Gen Genomics, 2004, 271: 709.
[4]
Yao H, Song J Y, Liu C, et al. Use of ITS2 region as the universal DNA barcode for plants and animals[J]. PloS One, 2010, 5(10): e13102.
[5]
Gao T, Yao H, Song J Y, et al. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2[J]. J Ethnopharmacol, 2010, 130: 116.
[6]
Qiu D, Pan X, Wilson I W, et al. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis)[J]. Gene, 2009, 436: 37.
[7]
Wu Q, Song J, Sun Y, et al. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation[J]. Physiol Plant, 2010, 138(2): 134.
[8]
Jung J D, Park H W, Hahn Y, et al. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags[J]. Plant Cell Rep, 2003, 22(3): 224.
[9]
Choi D W, Jung J D, Young I H, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites[J]. Plant Cell Rep, 2005, 23: 557.
[10]
Han J Y, Kwon Y S, Yang D C, et al. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng[J]. Plant Cell Physiol, 2006, 47(12): 1653.
[11]
Nelson D R, Mang R, Alam M, et al. Comparison of cytochrome P450 genes from six plant genomes[J]. Trop Plant Biol, 2008, 1: 216.
Shim J S, Lee O R, Kim Y J, et al. Overexpression of PgSQS1 increases ginsenoside production and negatively afects ginseng growth rate in Panax ginseng[J]. J Ginseng Res, 2010, 34(2): 98.
[14]
Ali M B, Yu K W, Hahn E J, et al. Methyl jasmonate and salicylic acid eliciation induces ginsenosides accumulation, enzymatic and non-enzymatic anti-oxidant in suspension culture Panax ginseng roots in bioreactors[J]. Plant Cell Rep, 2006, 25: 613.
[15]
Lee M H, Jeong J H, Seo J K, et al. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene[J]. Plant Cell Physiol, 2004, 45(8): 976.
[16]
Han J Y, In J G, Kwon Y S, et al. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng[J]. Phytochenmistry, 2010, 71(1): 36.
[17]
Chang M C, Eachus R A, Trieu W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s[J]. Nat Chem Biol, 2007, 3(5): 274.
[18]
Tsuruta H, Paddon C J, Eng D, et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli[J]. PloS One, 2009, 4(2): e4489.
[19]
Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440: 940.
[20]
Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70.
[21]
Liu T, Khosla C. A balancing act for taxol precursor pathway in E. coli[J]. Science, 2010, 330(6000): 44.
Dong T T, Cui X M, Song Z H, et al. Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents[J]. J Agric Food Chem, 2003, 51 (16): 4617.
[27]
Attele A S, Wu J A, Yuan C S. Ginseng pharmacology: multiple constituents and multiple actions[J]. Biochem Pharmacol, 1999, 58: 1685.
[28]
李方元. 中国人参和西洋参[M]. 北京: 中国农业科学出版社, 2002: 480.
[29]
Kim D S, Chang Y J, Zedk U, et al. Dammarane saponins from Panax ginseng[J]. Phytochemistry, 1995, 40: 1493.
[30]
Tung N H, Song G Y, Park Y J, et al. Two new dammaranetype saponins from the leaves of Panax ginseng[J]. Chem Pharm Bull, 2009, 57: 1412.
[31]
Briskin D P. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health[J]. Plant Physiol, 2000, 124(2): 507.
[32]
Song J Z, Li S L, Zhou Y, et al. A novel approach to rapidly explore analytical markers for quality control of Radix Salviae Miltiorrhizae extract granules by robust principal component analysis with ultra-high performance liquid chromatography-ultraviolet-quadrupole time-of-flight mass spectrometry[J]. J Pharmaceut Biomed, 2010, 53: 279.
[33]
Chen S L, Luo H M, Li Y, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng[J]. Plant Cell Rep, 2011, 30: 1593.
[34]
Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomics, 2010, 11: 262.
[35]
Kim K J, Lee H L. Complete chloroplast genome sequences from Korean ginseng(Panax ginseng) and comparative analysis of sequence evolution among 17 vascular plants[J]. DNA Research, 2004, 11: 247.
[36]
Hebert P D, Ratnasingham S, deWaard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proc Biol Sci, 2003, 270(S1): S96.
Ngan F, Shaw P, But P, et al. Molecular authentication of Panax species[J]. Phytochemistry, 1999, 50: 787.
[47]
Fushimi H, Komatsu K, Isobe M, et al. Application of PCR-RFLP and MASA analyses on 18S ribosomal RNA gene sequence for the identification of three ginseng drugs[J]. Biol Pharm Bull, 1997, 20: 765.
[48]
Um J Y, Chung H S, Kim M S, et al. Molecular authentication of Panax ginseng species by RAPD analysis and PCR-RFLP[J]. Biol Pharm Bull, 2001, 24(8): 872.
[49]
Ho I S, Leung F C. Isolation and characterization of repetitive DNA sequences from ginseng[J]. Mol Genet Genomics, 2002, 266: 951.
[50]
Leung F C, Ho I S. Development of low-cot DNA probe for fingerprinting Asia and North American ginseng. Hamilton:On-line Proceedings of the 5th Internet World Congress on Biomedical Sciences, 1998.
Chen S L, Yao H, Han J P, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species[J]. PloS One, 2010, 5(1): e8613.
Vuylsteke M, Peleman J D, van Eijk M J. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis[J]. Nat Protoc, 2007, 2(6): 1399.
[61]
Busch W, Lohmann J U. Profiling a plant: expression analysis in Arabidopsis[J]. Curr Opin Plant Biol, 2007, 10(2): 136.
[62]
Wang W, Wang Y, Zhang Q, et al. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing[J]. BMC Genomics, 2009, 10: 465.
[63]
Sui C, Zhang J, Wei J, et al. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins[J]. BMC Genomics, 2011, 12: 539.
[64]
Sun Y Z, Luo H M, Li Y, et al. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport[J]. BMC Genomics, 2011, 12: 533.
[65]
Shukla A K, Shasany A K, Gupta M M, et al. Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles[J]. J Exp Bot, 2006, 57: 3921.
[66]
Lin X H, Zhang J, Li Y, et al. Functional genomics of a living fossil tree, Ginkgo, based on next-generation sequencing technology[J]. Physiol Plant, 2011, 143: 207.
[67]
Kim M K, Lee B S, In J G, et al. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf[J]. Plant Cell Rep, 2006, 25: 599.
[68]
Sathiyamoorthy S, In J G, Gayathri S, et al. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots[J]. Mol Biol Rep, 2010, 37: 3465.
[69]
Han J Y, Kim H J, Kwon Y S, et al. The cytochrome P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng[J]. Plant Cell Physiol, 2011, 52(12): 2062.
Wang J, Gao W Y, Zhuang J, et al. Advances in study of ginsenoside biosynthesis pathway in Panax ginseng C. A. Meyer[J]. Acta Physiol Plant, 2012, 34: 397.
[72]
Haralampidis K, Trojanowska M, Osbourn A E. Biosynthesis of triterpenoid saponins in plants[J]. Adv Biochem Eng Biotechnol, 2002, 75: 31.
[73]
Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. FEBS Lett, 2006, 580: 5143.
[74]
Kushiro T, Shibuya M, Ebizuka Y. Beta-amyrin synthase——cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. Eur J Biochem, 1998, 256: 238.
[75]
Keasling J D. Synthetic biology for synthetic chemistry[J]. Acs Chemical Biology, 2008, 3(1): 64.
[76]
Benner S A, Sismour A M. Synthetic biology[J]. Nat Rev Genet, 2005, 6: 533.
[77]
Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnol, 2003, 21(7): 796.