全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

藤黄化学生物学研究进展

Keywords: 藤黄,藤黄酸,抗肿瘤,靶蛋白,α,β-不饱和酮,迈克尔反应,代谢,磺化

Full-Text   Cite this paper   Add to My Lib

Abstract:

该综述通过对藤黄抗肿瘤药用历史的回顾、研究现状的总结,以及笔者课题组近年来的若干发现,探讨了藤黄化学生物学研究中3个关键科学问题,包括藤黄中有哪些化学成分,藤黄中的化学成分通过什么方式作用于肿瘤细胞,生物机体通过什么途径处置藤黄中的化学成分。此外,笔者还将在该综述中对以藤黄中主要化学成分为先导化合物的抗肿瘤新药开发前景提出一些思考和建议。

References

[1]  Han Q B, Xu H X. Caged Garcinia xanthones: development since 1937 [J]. Curr Med Chem, 2009, 16 (28): 3775.
[2]  藤黄抗癌研究协作组.藤黄(总体)抗癌实验与临床研究报告 [J]. 江西医药, 1982 (3): 1.
[3]  潘德年, 林腮菊, 黎昌琦, 等. 藤黄制剂临床治疗恶性肿瘤50例 [J]. 肿瘤学附刊, 1981, 8 (4): 230.
[4]  雷秋模, 宋奇思, 涛德年, 等. 中药藤黄治疗乳腺癌77例疗效观察 [J]. 肿瘤防治研究, 1986, 13 (2): 111.
[5]  宋奇思, 衷诚任, 刘定华, 等. 中药藤黄治疗皮肤癌13例临床观察 [J]. 实用癌症杂念, 1986 (3): 46.
[6]  藤黄抗癌研究协作组.中药藤黄制剂治疗41例皮肤癌 [J]. 中华皮肤科杂志, 1986 (1): 31.
[7]  雷秋模,刘金妹.藤黄抗癌作用研究的回顾与展望 [J].肿瘤防治杂志,2003,10(2): 216.
[8]  Guo Q L, You Q D, Wu Z Q, et al. General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice [J]. Acta Pharmacol Sin, 2004, 25 (6): 769.
[9]  Han Q B, Wang Y L, Yang L, et al. Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi [J]. Chem Pharm Bull, 2006, 54 (2): 265.
[10]  Asano J, Chiba K, Tada M, et al. Cytotoxic xanthones from Garcinia hanburyi[J]. Phytochemistry, 1996, 41(3): 815.
[11]  陈葆仁. 藤黄抗癌成分的研究Ⅰ——藤黄酸的分离和结构的鉴定 [J]. 江西医学院学报, 1980 (2): 1.
[12]  贾明美,寿清耀,谭青,等.藤黄化学成分研究 [J].化学学报,2008,66(22): 2513.
[13]  Tao S J, Guan S H, Wang W, et al. Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi [J]. J Nat Prod, 2009, 72(1): 117.
[14]  周安, 李庆林, 彭代银, 等. 高效液相色谱-质谱联用法鉴定中药藤黄中桥环类化合物[J]. 药学学报, 2008, 43(8): 838.
[15]  Zhou Y, Liu X, Yang J, et al. Analysis of caged xanthones from the resin of Garcinia hanburyi using ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry [J]. Anal Chim Acta, 2008, 629(1/2): 104.
[16]  Lu N, Yang Y, You Q D, et al. Gambogic acid inhibits angiogenesis through suppressing vascular endothelial growth factor-induced tyrosine phosphorylation of KDR/Flk-1 [J]. Cancer Lett, 2007, 258(1): 80.
[17]  Wang X, Lu N, Yang Q, et al. Studies on chemical modification and biology of a natural product, gambogic acid (III): determination of the essential pharmacophore for biological activity [J]. Eur J Med Chem, 2011, 46(4): 1280.
[18]  Wu Z Q, Guo Q L, You Q D, et al. Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells [J]. Biol Pharm Bull, 2004, 27(11): 1769.
[19]  Zhao L, Guo Q L, You Q D, et al. Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells [J]. Biol Pharm Bull, 2004, 27(7): 998.
[20]  Liu W, Guo Q L, You Q D, et al. Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823 [J]. World J Gastroenterol, 2005, 11(24): 3655.
[21]  Guo Q L, Lin S S, You Q D, et al. Inhibition of human telomerase reverse transcriptase gene expression by gambogic acid in human hepatoma SMMC-7721 cells [J]. Life Sci, 2006, 78(11): 1238.
[22]  Yu J, Guo Q L, You Q D, et al. Repression of telomerase reverse transcriptase mRNA and hTERT promoter by gambogic acid in human gastric carcinoma cells [J]. Cancer Chemother Pharmacol, 2006, 58(4): 434.
[23]  Yu J, Guo Q L, You Q D, et al. Gambogic acid-induced G2/M phase cell-cycle arrest via disturbing CDK7-mediated phosphorylation of CDC2/p34 in human gastric carcinoma BGC-823 cells [J]. Carcinogenesis, 2007, 28(3): 632.
[24]  Chen J, Gu H Y, Lu N, et al. Microtubule depolymerization and phosphorylation of c-Jun N-terminal kinase-1 and p38 were involved in gambogic acid induced cell cycle arrest and apoptosis in human breast carcinoma MCF-7 cells [J]. Life Sci, 2008, 83(3/4): 103.
[25]  Gu H, Wang X, Rao S, et al. Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells [J]. Mol Cancer Ther, 2008, 7(10): 3298.
[26]  Gu H, You Q, Liu W, et al. Gambogic acid induced tumor cell apoptosis by T-lymphocyte activation in H22 transplanted mice [J]. Int Immunopharmacol, 2008, 8(11): 1493.
[27]  Qi Q, Gu H, Yang Y, et al. Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis [J]. J Mol Med (Berl), 2008, 86(12): 1367.
[28]  Qi Q, Lu N, Wang X T, et al. Anti-invasive effect of gambogic acid in MDA-MB-231 human breast carcinoma cells [J]. Biochem Cell Biol, 2008, 86(5): 386.
[29]  Zhao J, Qi Q, Yang Y, et al. Inhibition of alpha(4) integrin mediated adhesion was involved in the reduction of B16-F10 melanoma cells lung colonization in C57BL/6 mice treated with gambogic acid [J]. Eur J Pharmacol, 2008, 589(1/3): 127.
[30]  Zhao Q, Yang Y, Yu J, et al. Posttranscriptional regulation of the telomerase hTERT by gambogic acid in human gastric carcinoma 823 cells [J]. Cancer Lett, 2008, 262(2): 223.
[31]  Gu H, Rao S, Zhao J, et al. Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells [J]. J Cancer Res Clin Oncol, 2009, 135(12): 1777.
[32]  Nie F, Zhang X, Qi Q, et al. Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells [J]. Toxicology, 2009, 260(1/3): 60.
[33]  Rong J J, Hu R, Qi Q, et al. Gambogic acid down-regulates MDM2 oncogene and induces p21(Waf1/CIP1) expression independent of p53 [J]. Cancer Lett, 2009, 284(1): 102.
[34]  Rong J J, Hu R, Song X M, et al. Gambogic acid triggers DNA damage signaling that induces p53/p21(Waf1/CIP1) activation through the ATR-Chk1 pathway [J]. Cancer Lett, 2010, 296(1): 55.
[35]  Wang J, Zhao Q, Qi Q, et al. Gambogic acid-induced degradation of mutant p53 is mediated by proteasome and related to CHIP [J]. J Cell Biochem, 2011, 112(2): 509.
[36]  Li C, Lu N, Qi Q, et al. Gambogic acid inhibits tumor cell adhesion by suppressing integrin beta1 and membrane lipid rafts-associated integrin signaling pathway [J]. Biochem Pharmacol, 2011, 82(12): 1873.
[37]  Yang J, Ding L, Hu L, et al. Rapid characterization of caged xanthones in the resin of Garcinia hanburyi using multiple mass spectrometric scanning modes: the importance of biosynthetic knowledge based prediction [J]. J Pharm Biomed Anal, 2012, 60(4): 71.
[38]  Han Q, Yang L, Liu Y, et al. Gambogic acid and epigambogic acid, C-2 epimers with novel anticancer effects from Garcinia hanburyi[J]. Planta Med, 2006, 72(3): 281.
[39]  Feng F, Liu W Y, Chen Y S, et al. Five novel prenylated xanthones from Resina Garciniae [J]. J Asian Nat Prod Res, 2007, 9(6/8): 735.
[40]  Lin L J, Lin L Z, Pezzuto J M, et al. Isogambogic acid and isomorellinol from Garcinia hanburyi [J]. Magn Reson Chem, 1993, 31: 340.
[41]  Han Q B, Song J Z, Qiao C F, et al. Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography [J]. J Chromatogr A, 2006, 1127(1/2): 298.
[42]  Han Q B, Yang L, Wang Y L, et al. A pair of novel cytotoxic polyprenylated xanthone epimers from gamboges [J]. Chem Biodivers, 2006, 3(1): 101.
[43]  Qiang L, Yang Y, You Q D, et al. Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study [J]. Biochem Pharmacol, 2008, 75(5): 1083.
[44]  Chantarasriwong O, Batova A, Chavasiri W, et al. Chemistry and biology of the caged Garcinia xanthones [J]. Chemistry, 2010, 16(33): 9944.
[45]  崔洪英,柳文媛,王磊,等.中药藤黄呫吨酮类化合物及其分析测定方法 [J].药学进展,2011,35(8): 337.
[46]  韩全斌,宋景政,乔春峰,等.藤黄中 xanthone 类化合物的定性定量分析 [J].中国天然药物,2006,4(3): 2210.
[47]  Qin Y, Meng L, Hu C, et al. Gambogic acid inhibits the catalytic activity of human topoisomerase II alpha by binding to its ATPase domain [J]. Mol Cancer Ther, 2007, 6(9): 2429.
[48]  Kasibhatla S, Jessen K A, Maliartchouk S, et al. A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid [J]. Proc Natl Acad Sci USA, 2005, 102(34): 12095.
[49]  Zhai D, Jin C, Shiau C W, et al. Gambogic acid is an antagonist of antiapoptotic Bcl-2 family proteins [J]. Mol Cancer Ther, 2008, 7(6): 1639.
[50]  Pandey M K, Sung B, Ahn K S, et al. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway [J]. Blood, 2007, 110(10): 3517.
[51]  周政涛,王金万.注射用藤黄酸I期临床耐受性研究 [J].中国新药杂志,2007,16(1): 79.
[52]  Yang Y, Yang L, You Q D, et al. Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes [J]. Cancer Lett, 2007, 256(2): 259.
[53]  Hanahan D, Weinberg R A.Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646.
[54]  Lu L, Tang D, Wang L, et al. Gambogic acid inhibits TNF-alpha-induced invasion of human prostate cancer PC3 cells in vitro through PI3K/Akt and NF-kappaB signaling pathways [J]. Acta Pharmacol Sin, 2012,33(4):531.
[55]  Yi T, Yi Z, Cho S G, et al. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling [J]. Cancer Res, 2008, 68(6): 1843.
[56]  Li R, Chen Y, Zeng L L, et al. Gambogic acid induces G0/G1 arrest and apoptosis involving inhibition of SRC-3 and inactivation of Akt pathway in K562 leukemia cells [J]. Toxicology, 2009,262(2):98.
[57]  Liu Y, Li W, Ye C, et al. Gambogic acid induces G0/G1 cell cycle arrest and cell migration inhibition via suppressing PDGF receptor beta tyrosine phosphorylation and Rac1 activity in rat aortic smooth muscle cells [J]. J Atheroscler Thromb, 2010, 17(9): 901.
[58]  Zhao W, Zhou S F, Zhang Z P, et al. Gambogic acid inhibits the growth of osteosarcoma cells in vitro by inducing apoptosis and cell cycle arrest [J]. Oncol Rep, 2011,25(2):1289.
[59]  Palempalli U D, Gandhi U, Kalantari P, et al. Gambogic acid covalently modifies I kappaB kinase-beta subunit to mediate suppression of lipopolysaccharide-induced activation of NF-kappaB in macrophages [J]. Biochem J, 2009, 419(2): 401.
[60]  Panthong A, Norkaew P, Kanjanapothi D, et al. Anti-inflammatory, analgesic and antipyretic activities of the extract of gamboge from Garcinia hanburyi Hook f [J]. J Ethnopharmacol, 2007, 111(2): 335.
[61]  Zhang L, Yi Y, Chen J, et al. Gambogic acid inhibits Hsp90 and deregulates TNF-alpha/NF-kappaB in HeLa cells [J]. Biochem Biophys Res Commun, 2010, 403(3/4): 282.
[62]  Yang J, Ding L, Hu L, et al. Comparison of electron capture-atmospheric pressure chemical ionization and electrospray ionization for the analysis of gambogic acid and its main circulating metabolite in dog plasma [J]. Eur J Mass Spectrom, 2010, 16(5): 605.
[63]  Lopachin R M, Gavin T, Decaprio A, et al. Application of the hard and soft, acids and bases (HSAB) theory to toxicant-target interactions [J]. Chem Res Toxicol, 2012, 25(2): 239.
[64]  Weerapana E, Wang C, Simon G M, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes [J]. Nature, 2010, 468(7325): 790.
[65]  Yang J, Li C, Ding L, et al. Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain [J]. J Nat Prod, 2012, 75(6): 1108.
[66]  Schmitt E K, Moore C M, Krastel P, et al. Natural products as catalysts for innovation: a pharmaceutical industry perspective [J]. Curr Opin Chem Biol, 2011, 15(4): 497.
[67]  Bottcher T, Pitscheider M,Sieber S A. Natural products and their biological targets: proteomic and metabolomic labeling strategies [J]. Angew Chem Int Ed Engl, 2010, 49(15): 2680.
[68]  Codreanu S G, Zhang B, Sobecki S M, et al. Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal [J]. Mol Cell Proteomics, 2009, 8(4): 670.
[69]  Jacobs A T, Marnett L J. Systems analysis of protein modification and cellular responses induced by electrophile stress [J]. Acc Chem Res, 2010, 43(5): 673.
[70]  刘若庸, 赵泰, 刘淑珍. 3H-藤黄酸在小鼠体内的吸收、分布和排泄的研究 [J]. 天津药学, 1989(3): 9.
[71]  郝琨,柳晓泉,王广基.藤黄酸在大鼠体内的药代动力学 [J].中国药科大学学报,2005,36(4): 338.
[72]  Hao K, Liu X Q, Wang G J, et al. Pharmacokinetics, tissue distribution and excretion of gambogic acid in rats [J]. Eur J Drug Metab Pharmacokinet, 2007, 32(2): 63.
[73]  Hao K, Zhao X P, Liu X Q, et al. Determination of gambogic acid in dog plasma by high-performance liquid chromatography for a pharmacokinetic study [J]. Biomed Chromatogr, 2007, 21(3): 279.
[74]  Yang J, Ding L, Hu L, et al. Comparison of electron capture-atmospheric pressure chemical ionization and electrospray ionization for the analysis of gambogic acid and its main circulating metabolite in dog plasma [J]. Eur J Mass Spectrom, 2010, 16(5): 605.
[75]  Feng F, Liu W, Wang Y, et al. Structure elucidation of metabolites of gambogic acid in vivo in rat bile by high-performance liquid chromatography-mass spectrometry and high-performance liquid chromatography-nuclear magnetic resonance [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 860(2): 218.
[76]  Zhang L, You Q, Liang Y, et al. Identification of gambogic acid metabolites in rat bile by liquid chromatography-tandem mass spectrometry-ion trap-time-of-flight [J]. Chin J Nat Med, 2009, 7(5): 376.
[77]  Yang J, Ding L, Hu L, et al. Metabolism of gambogic acid in rats: a rare intestinal metabolic pathway responsible for its final disposition [J]. Drug Metab Dispos, 2011, 39(4): 617.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133