全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

红树族植物次生木质部附物纹孔的电镜观测

DOI: 10.3724/SP.J.1259.2015.00090, PP. 90-99

Keywords: 红树族,附物纹孔,微形态,丰富度,生态-系统演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?应用扫描电子显微镜详细观察了红树族4属、10种、1变种植物次生木质部管状分子附物纹孔的分布和形态,应用Carnoy2.0软件和扫描电镜下采集的照片,测定了管间梯状附物纹孔丰富度指标和管间梯状纹孔数量特征指标。结果显示,红树族植物次生木质部管状分子侧壁具附物纹孔。所观察的植物附物纹孔的分布和形态变化大。附物纹孔丰富度指标与管间梯状纹孔数量特征指标的逐步回归分析表明,导管侧壁附物纹孔丰富度随纹孔口面积百分比的增大而增大。据此推测,红树族植物附物纹孔丰富度与纹孔几何构造及数量特征有关。附物纹孔是红树族植物稳定存在的一个木材解剖性状。综合生态-系统演化的观点,红树族植物具附物纹孔可能是受系统演化关系控制的生态适应结果。

References

[1]  8 Choat B, Brodie TW, Cobb AR, Zwieniecki MA, Holbrook NM (2006). Direct measurement of intervessel pit membrance hydraulic resistance in two angiosperm tree species. Am J Bot 93, 993-1000.
[2]  29 Wheeler EA, Baas P, Rodgers S (2007). Variations in dieot wood anatomy: a global analysis based on the Inside Wood database. IAWA J 28, 229-258.
[3]  30 Wu J, Ohtani J, Fukazawa K (1989). SEM observations on the vessel wall modifications in Yunnan hardwoods. Res Bull CoIl Exp For Hokkaido Univ 46, 847-939.
[4]  1 邓传远, 郭素枝, 林鹏 (2004a). 海桑属( Sonneratia )植物的木材结构及其系统演化意义. 热带亚热带植物学报 12, 213-220.
[5]  2 邓传远, 林鹏, 郭素枝 (2004b). 海桑属红树植物次生木质部解剖特征及其对潮间带生境的适应. 植物生态学报 28, 392-399.
[6]  3 邓传远, 林鹏, 郭素枝 (2004c). 榄李属( Lumnitzera )红树植物的木材解剖学研究. 厦门大学学报(自然科学版) 43, 406-411.
[7]  4 Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1998). Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Can J Bot 76, 1180-1187.
[8]  5 Baas P, Wheeler E, Chase M (2000). Dicotyledonous wood anatomy and the APG system of angiosperm classification. Bot J Linnean Soc 134, 3-17.
[9]  6 Carlquist S (2001). Comparative Wood Anatomy, 2nd edn. Berlin: Springer Verlag.
[10]  7 Carlquist S (2012). How wood evolves: a new synthesis. Botany 90, 901-940.
[11]  9 Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM (2004). Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J Exp Bot 55, 1569-1575.
[12]  10 IAWA Committee (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin ns 10, 219- 332.
[13]  11 Jansen S, Baas P, Gasson P, Lens F, Smets E (2004). Variation in xylem structure from tropics to tundra: evidence from vestured pits. Proc Natl Acad Sci USA 101, 8833-8837.
[14]  12 Jansen S, Baas P, Gasson P, Smets E (2003). Vestured pits: do they promote safer water transport? Int J Plant Sci 164, 405-413.
[15]  13 Jansen S, Baas P, Smets E (2001). Vestured pits: their occurrence and systematic importance in eudicots. Taxon 50, 135-167.
[16]  14 Jansen S, Kitin P, De Pauw H, Idris M, Beeckman H, Smets E (1998a). Preparation of wood specimens for transmitted light microscopy and scanning electron microscopy. Belg J Bot 131, 41-49.
[17]  15 Jansen S, Piesschaert F, Smets E (2000). Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships. Am J Bot 87, 20-28.
[18]  16 Jansen S, Pletsers A, Rabaey D, Lens F (2008). Vestured pits: a diagnostic character in the secondary xylem of Myrtales. J Trop For Sci 20, 328-339.
[19]  17 Jansen S, Robbrecht E, Beeckman H, Smets E (2002). A survey of the systematic wood anatomy of the Rubiaceae. IAWA J 23, 1-67.
[20]  18 Jansen S, Smets E, Baas P (1998b). Vestures in woody plants: a review. IAWA J 19, 347-382.
[21]  19 Kohonen MM, Helland A (2009). On the function of wall sculpturing in xylem conduits. J Bionics Eng 6, 324-329.
[22]  20 Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer . New Phytol 190, 709-723.
[23]  21 Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S (2013). Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr Opin Plant Biol 16, 287-292.
[24]  22 Meylan BA, Butterfield BG (1974). Occurrence of vestured pits in the vessels and fibres of New Zealand woods. NZ J Bot 12, 3-18.
[25]  23 Ohtani J, Ishida S (1976). Study on the pit of wood cells using scanning electron microscopy. Report 5. Vestured pits in Japanese dicotyledonous woods. Res Bull CoIl Exp For Hokkaido Univ 33, 407-435.
[26]  24 Rabaey D, Lens F, Smets E, Jansen S (2010). The phylogenetic significance of vestured pits in Boraginaceae. Taxon 59, 510-516.
[27]  25 Schmitz N, Jansen S, Verheyden A, Kairo JG, Beeckman H, Koedam N (2007). Comparative anatomy of intervessel pits in two mangrove species growing along a natural salin- ity gradient in Gazi Bay, Kenya. Ann Bot 100, 271-281.
[28]  26 Schmitz N, Koch G, Schmitt U, Beeckman H, Koedam N (2008). Intervessel pit structure and histochemistry of two mangrove species as revealed by cellular UV microspectrophotometry and electron microscopy: intraspecific variation and functional significance. Microsc Microanal 14, 387-397.
[29]  27 Schwarzbach AE, Ricklefs RE (2000). Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morpho- logy. Am J Bot 87, 547-564.
[30]  28 Van Vliet GJCM (1976). Wood anatomy of the Rhizophoraceae. Leiden Bot Ser 3, 20-75.
[31]  31 Wurdack KJ, Davis CC (2009). Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96, 1551-1570.
[32]  32 Zweypfenning RCVJ (1978). A hypothesis on the function of vestured pits. IAWA Bull 1, 13-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133