全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

高粱、紫苏叶脉密度与光合特性的关系

DOI: 10.3724/SP.J.1259.2015.00100, PP. 100-106

Keywords: 水导度,光合特性,气孔密度,蒸腾速率,叶脉密度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?叶脉是植物叶片光合作用水分输送的重要结构。为阐述叶脉与光合特性之间的关系,以C4植物高粱(Sorghumbicolor)、C3植物紫苏(Perillafrutescens)为实验材料研究了叶脉密度和光合特性之间的关系。结果表明,与紫苏相比,高粱叶片叶脉密度大,导水能力强,蒸腾速率高,但气孔密度小。进一步分析表明,高粱叶片近轴侧气孔密度占总气孔的比例明显高于紫苏。叶脉密度大的高粱具有较高的净光合速率;而紫苏叶脉密度小,净光合速率也较低。由此表明,较高的叶脉密度有利于支持较高的光合速率,但研究表明叶脉密度和气孔密度可能不存在严格的协同变异关系。研究结果对理解植物光合作用适应有重要意义。

References

[1]  1 程亮 (2011). 干旱胁迫下不同苹果品种叶片形态结构和水分利用效率的关系研究. 硕士论文. 杨凌: 西北农林科技大学. pp. 4-6.
[2]  2 黄勇, 周冀衡, 郑明, 杨虹琦, 张苧元 (2008). 不同成熟度烟叶结构显微分析. 中国烟草科学 29(2), 5-8.
[3]  3 姜彦秋, 黄峻, 苗以农 (1991). 大豆叶片表面结构与蒸腾的关系. 作物学报 17, 42-46.
[4]  4 李海波, 李全英, 陈温福, 孟雷 (2003). 氮素不同用量对水稻叶片气孔密度及有关生理性状的影响. 沈阳农业大学学报 34, 340-343.
[5]  5 潘瑞炽 (2004). 植物生理学(第5版). 北京: 高等教育出版社. pp. 23-25.
[6]  6 王晓琳, 李志强, 姜闯道, 石雷, 邢全, 刘立安 (2012). 散射光和直射光对高粱叶片光合功能的影响. 作物学报 38, 1452-1459.
[7]  7 钟海民, 杨福囤, 沈振西 (1991). 矮嵩草草甸主要植物气孔分布及开闭规律与蒸腾强度的关系. 植物生态学与地植物学学报 15, 66-70.
[8]  8 Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecol Lett 14, 91-100.
[9]  9 Brodribb TJ, Feild TS (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13, 175-183.
[10]  10 Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144, 1890-1898.
[11]  11 Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37, 488-498.
[12]  12 Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytol 192, 437-448.
[13]  13 Carins Murphy MR, Jordan GJ, Brodribb TJ (2012). Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ 35, 1407-1418.
[14]  14 Carins Murphy MR, Jordan GJ, Brodribb TJ (2014). Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ 37, 124-131.
[15]  15 Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO 2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106, 10343- 10347.
[16]  16 Philip JR (1966). Plant water relations: some physical aspects. Annu Rev Plant Physiol 17, 245-268.
[17]  17 Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483-491.
[18]  18 Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198, 983-1000.
[19]  19 Scoffoni C, McKown AD, Rawls M, Sack L (2012). Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. J Exp Bot 63, 643-658.
[20]  20 Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156, 832-843.
[21]  21 Walls RL (2011). Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set. Am J Bot 98, 244-253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133