全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

集群栽培对棉花种内关系的影响

DOI: 10.3724/SP.J.1259.2015.00083, PP. 83-89

Keywords: 棉花,集群种植,竞争,助长,种内关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了检验假说“1穴3株集群栽培方式改变了棉花(Gossypiumhirsutum)的种内关系,从而使得经济产量显著提高”,通过分析在集群和传统栽培方式下棉花各器官的生长特性,阐明集群栽培下不同穴距对棉花种内关系的影响。结果表明,与传统1穴1株种植相比,集群栽培方式下随着穴距的减小,棉花的茎秆生长显著降低,在穴距为28cm时,叶片生物量最大且籽棉产量最高。进一步分析相对邻体效应(RNE),发现穴距对棉花茎秆、叶片和籽棉产量的RNE影响都极为显著;同时,随着穴距的减小,茎秆RNE值呈先升高后降低趋势,且均为负值,负效应强度在穴距为28cm时最小。叶片和籽棉产量的RNE值均为正值,且在穴距为28cm时正效应强度最大。上述研究结果表明,集群栽培改变了棉花的种内关系,且在穴距为28cm时,对棉花籽棉产量的助长作用最大。

References

[1]  1 李博, 陈家宽, 沃金森AR (1998). 植物竞争研究进展. 植物学通报 15(4), 18-29.
[2]  2 苏培玺, 杜明武, 赵爱芬, 张小军 (2002). 荒漠绿洲主要作物及不同种植方式需水规律研究. 干旱地区农业研究 20(2), 79-85.
[3]  3 苏培玺, 解婷婷, 丁松爽 (2009). 河西走廊绿洲棉花集群高产栽培试验研究. 干旱地区农业研究 27(6), 108-113.
[4]  4 吴开贤, 安瞳昕, 范志伟, 周锋, 薛国峰, 吴伯志 (2012). 土壤氮异质性与种间地上竞争对玉米和马铃薯生长的影响. 中国生态农业学报 20, 1571-1578.
[5]  5 于国磊 (2011). 水淹对克隆植物空心莲子草种内关系的影响. 植物生态学报 35, 973-980.
[6]  6 Bertness MD (1989). Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology 70, 257-268.
[7]  7 Bertness MD, Callaway RM (1994). Positive interactions in communities. Trends Ecol Evol 9, 191-193.
[8]  8 Bertness MD, Ewanchuk PJ (2002). Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oe- cologia 132, 392-401.
[9]  9 Bertness MD, Hacker SD (1994). Physical stress and positive associations among marsh plants. Am Nat 144, 363-372.
[10]  10 Bertness MD, Yeh SM (1994). Cooperative and competitive interactions in the recruitment of marsh elders. Ecology 75, 2416-2429.
[11]  11 Bosse U, Frenzel P (1997). Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants ( Oryza sativa ). Appl Environ Microb 63, 1199-1207.
[12]  12 Bruno JF, Stachowicz JJ, Bertness MD (2003). Inclusion of facilitation into ecological theory. Trends Ecol Evol 18, 119-125.
[13]  13 Buttery BR, Williams WT, Lambert JM (1965). Competition between Glyceria maxima and Phragmites communis in the region of Surlingham Broad. II. The fen gradient. J Ecol 53, 183-195.
[14]  14 Callaway RM (2007). Positive Interactions and Interdependence in Plant Communities. Dordrecht: Springer.
[15]  15 Callaway RM, Walker LR (1997). Competition and facilitation: a synthetic approach to interactions in plant communi- ties. Ecology 78, 1958-1965.
[16]  16 Cavieres LA, Sierra-Almeida A (2012). Facilitative interactions do not wane with warming at high elevations in the Andes. Oecologia 170, 575-584.
[17]  17 Crain CM (2008). Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. J Ecol 96, 166-173.
[18]  18 DeAngelis DL, Post WM, Travis CC (1986). Positive Feedback in Natural Systems. Berlin: Springer.
[19]  19 Jiang HH, Kong FX, Gu XZ, Chen KN, Zhao SW, Wang J (2010). Influence of intraspecific interaction and substrate type on initial growth and establishment of Hydrilla verticillata . Hydrobiologia 649, 255-265.
[20]  20 Kikvidze Z, Khetsuriani L, Kikodze D, Callaway RM (2006). Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus. J Veg Sci 17, 77-82.
[21]  21 Kitzberger T, Steinaker DF, Veblen TT (2000). Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology 81, 1914-1924.
[22]  22 Li PX, Krüsi BO, Li SL, Cai XH, Yu FH (2011a). Can Potentilla fruticosa Linn. shrubs facilitate the herb layer of heavily grazed pasture on the eastern Tibetan Plateau? Pol J Ecol 59, 135-146.
[23]  23 Li PX, Krüsi BO, Li SL, Cai XH, Yu FH (2011b). Facilitation associated with three contrasting shrub species in heavily grazed pastures on the eastern Tibetan Plateau. Community Ecol 12, 1-8.
[24]  24 Luo WB, Xie YH, Chen XS, Li F, Qin XY (2010). Competition and facilitation in three marsh plants in response to a water-level gradient. Wetlands 30, 525-530.
[25]  25 Maestre FT, Cortina J (2004). Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proc Biol Sci 271, S331-S333.
[26]  26 Maestre FT, Valladares F, Reynolds JF (2005). Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J Ecol 93, 748-757.
[27]  27 Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000). Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23, 1237-1245.
[28]  28 Wang LW, Showalter AM, Ungar IA (2005). Effects of intraspecific competition on growth and photosynthesis of Atriplex prostrata . Aquat Bot 83, 187-192.
[29]  29 Wilson JB, Agnew ADQ (1992). Positive-feedback swit- ches in plant communities. Adv Ecol Res 23, 263-336.
[30]  30 Yu FH, Li PX, Li SL, He WM (2010). Kobresia tibetica tussocks facilitate plant species inside them and increase diversity and reproduction. Basic Appl Ecol 11, 743-751.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133