全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2013 

叶际微生物诱发气孔免疫的机制及其应用前景

DOI: 10.3724/SP.J.1259.2013.00658, PP. 658-664

Keywords: β-氨基丁酸,冠菌素,叶际微生物,气孔免疫,水分利用效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?植物叶际微生物通过自身代谢活动影响植物功能的正常运行。而植物则可感应叶际微生物的存在,在诱发气孔免疫关闭以抵御病原菌入侵的同时,也降低了植物蒸腾作用,提高了其水分利用效率。对气孔免疫相关理论的研究有利于开发新型生物抗蒸腾剂,并对开发节水农业新技术具有重要意义。该文综述了叶际微生物与植物间的互作关系、气孔免疫及其免疫机制等方面的研究进展,并探讨了相关机制在节水农业方面的应用前景和重点研究方向。

References

[1]  姜丹 (2009). 油菜叶际微生物多样性及其对敌敌畏的降解. 硕士论文. 石家庄: 河北科技大学环境科学与工程学院. pp. 3-5.
[2]  姜丹, 刚刚, 宁洎英, 杨建州, 白志辉 (2009). 油菜叶际敌敌畏降解菌多样性初步研究. 中国微生物生态学年会论文集. pp: 115-120.
[3]  李岩, 徐珊珊, 高静, 王根轩 (2011). 气孔免疫的研究进展及展望. 植物生理学报 47, 765-770.
[4]  潘建刚, 呼庆, 齐鸿雁, 张洪勋, 庄国强, 白志辉 (2011). 叶际微生物研究进展. 生态学报 31, 0583-0592.
[5]  施雯, 张汉波 (2007). 叶面微环境和微生物群落. 微生物学通报 34, 761-764.
[6]  王根轩 (1997). 作物干旱生理生态方法与进展. 兰州: 兰州大学出版社. pp. 182-203.
[7]  王根轩, 甘毅, 邱木清, 康燕 (2007). 基于酿酒酵母的植物抗蒸腾剂的制备方法. 中国专利, 20071006800.3. 2007-08-15.
[8]  王根轩, 高静, 甘毅, 王楠, 徐珊珊 (2011). 一种奶基气孔免疫抗蒸腾剂及其制备方法. 中国专利, 201110102002.8. 2011-08-10.
[9]  杨宇红, 陈霄, 谢丙炎 (2005). β-氨基丁酸诱导植物抗病作用及其机理. 农药学学报 7, 7-13.
[10]  张成省, 孔凡玉, 关小红, 王静, 李多川 (2008). 烟草叶围细菌Tpb55菌株的鉴定及其抑菌活性. 中国生物防治 24, 63-68.
[11]  张庆, 冷怀琼, 朱继熹 (1999). 苹果叶面附生微生物区系及其有益菌的研究Ⅳ蜡质芽孢杆菌Bo17代谢液中的生理活性物质. 西南农业学报 12, 96-99.
[12]  周海莲, 甘毅, 王根轩 (2008). 气孔免疫的研究和利用: 农业分子生态新热点. 生命科学仪器 6, 10-14.
[13]  Allen GJ, Sanders D (1996). Control of ionic currents in guard cell vacuoles by cytoplasmic and luminal calcium. Plant J 10, 1055-1069.
[14]  Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
[15]  Distéfano AM, García-Mata C, Lamattina L, Laxalt AM (2008). Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ 31, 187-194.
[16]  Durner J, Wendehenne D, Klessig DF (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Nat Acad Sci USA 95, 10328-10333.
[17]  Garcia-Mata C, Gay R, Sokolovski S, HillsA, lamattina L, Blatt MR (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid evoked signaling pathways. Proc Nat Acad Sci USA 100, 11116-11121.
[18]  Gudesblat GE, Torres PS, Vojnov AA (2009). Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149, 1017-1027.
[19]  Li Y, Wang GX, Xin M, Yang HM, Wu XJ, Li T (2004). The parameters of guard cell calcium oscillation encodes stomatal oscillation and closure in Vicia faba. Plant Sci 166, 415-421.
[20]  Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G (2009). RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 7, e1000139.
[21]  Underwood W, Melotto M, He SY (2007). Role of plant stomata in bacteria invasion. Cell Microbiol 9, 1621-1629.
[22]  Whipps JM, Hand P, Pink D and Bending GD (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105, 1744-1755.
[23]  Zeng W, He SY (2010). A Prominent Role of the Flagellin Receptor FLAGELLIN- SENSING2 in Mediating Stomatal Response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 153, 1188-1198.
[24]  Zeng WQ, Melotto M, He SY (2010). Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol 21, 599-603.
[25]  Zhang W, He SY, Assmann SM (2008). The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56, 984-996.
[26]  Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004). Bacterial disease resistance in Arabidopsis through ?agellin perception. Nature 428, 764–767.
[27]  甘毅 (2010). 微生物—叶际微环境交互调控下的气孔集群免疫振荡时空动态规律及其机理研究. 博士论文. 杭州: 浙江大学生命科学学院. pp. 16-35.
[28]  国辉, 毛志泉, 刘训理 (2011). 植物与微生物互作的研究进展. 中国农学通报 27, 28-33.
[29]  Macho AP, Boutrot F, JP, Zipfel C (2012). Aspartate oxidase plays an Important role in Arabidopsis stomatal immunity. Plant Physiol 159, 1845–1856.
[30]  Melotto M, Underwood W, He SY (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46, 101-122.
[31]  Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell 126, 969-980.
[32]  Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007). The coronatine-insensitive 1 mutation reveals the hormone signalling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Speci?c impairment of ion channel activation and second messenger production. Plant Physiol 143, 1398–1407.
[33]  Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika N, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T (2012). Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3: 926.
[34]  Ton J, Jakab G, Toquin V, Flors V, Iavicoli A,Maeder MN, Métraux JP, Mauch-Mani B (2005). Dissecting the β-aminobutyric acid induced priming pathways in Arabidopsis. Plant Cell 17, 987–999.
[35]  Ton J, Mauch-Mani B (2004). β-Amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38, 119-130.
[36]  Tsai CH, Singh P, Chen CW, Thomas J, Weber J, Mauch-Mani B, Zimmerli L (2011). Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine. Plant J 65, 469-479.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133