全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2013 

农杆菌介导巨桉Eg5高效遗传转化

DOI: 10.3724/SP.J.1259.2013.00087, PP. 87-93

Keywords: 农杆菌,巨桉,遗传转化,筛选策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

?以巨桉(Eucalyptusgrandis)无性系Eg5叶片为外植体,探讨了农杆菌(Agrobacteriumtumefaciens)侵染时间、共培养pH值和共培养时间对瞬时转化效率的影响,分析了不同筛选策略对遗传转化植株筛选效果的影响。结果表明,外植体侵染45分钟,共培养pH值为5.8,共培养3天所得到的瞬时转化效率最高;逐步提高卡那霉素(Km)浓度筛选转基因植株有效,筛选率达到15%,转化率达到0.26%。经过GUS染色分析和PCR检测,证实为转基因植株。

References

[1]  参考文献:
[2]  Aggarwal, D., A. Kumar,M. Sudhakara Reddy (2011). Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiologiae Plantarum, 33, 1603.
[3]  Alcantara, G. B. D., J. C. Bespalhok Filho,M. Quoirin (2011). Organogenesis and transient genetic transformation of the hybrid Eucalyptus grandis × Eucalyptus urophylla . Scientia Agricola, 68, 246-251.
[4]  Cervera, M., J. A. Pina, J. Juarez, L. Navarro,L. Pena (1998). Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Reports, 18, 271-278.
[5]  Wei, T. (2000). Genetic transformation of loblolly pine using mature zygotic embryo expiants by Agrobacterium tumefaciens. Journal of Forestry Research, 11, 215-222.
[6]  樊军锋 (2002). mtlD/gutD 双价耐盐基因转化杨树, 猕猴桃的研究. 博士论文. 杨凌:西北农林科技大学. pp.57-59.
[7]  方中达 (1979). 植病研究方法. 北京:农业出版社. pp. 1-12.
[8]  郭利军, 曾炳山, 刘英, 李湘阳,裘珍飞 (2012). 巨桉无性系Eg5的卡那霉素和头孢霉素敏感性研究. 中南林业科技大学学报, 32, 75-80.
[9]  姜清彬 (2011). 细枝木麻黄再生体系及农杆菌介导遗传转化研究. 博士论文. 北京:中国林业科学研究院. pp.73-74.
[10]  林平 (2001) 永安桉树造林及其冻害情况调查. 桉树科技, 17, 15-20.
[11]  祁述雄 (2002). 中国桉树 (第2版). 北京:中国林业出版社. pp. 228-230.
[12]  曾炳山, 张剑, 李建娟, 刘英, 陈李花,范春节 (2010). 桉树人工林冰雪灾害恢复的调查. 中南林业科技大学学报, 30, 69-74.
[13]  Da Silva, A. L. L., Y. de Oliveira,J. Da Luz Costa (2011). Preliminary results for genetic transformation of shoot tip of Eucalyptus saligna Sm. via Agrobacterium tumefaciens. Journal of Biotechnology and Biodiversity, 2, 1-6.
[14]  Fillatti, J. A. J., J. Sellmer, B. McCown, B. Haissig,L. Comai (1987). Agrobacterium mediated transformation and regeneration of Populus. Molecular and General Genetics MGG, 206, 192-199.
[15]  González, E. R., A. de Andrade, A. L. Bertolo, G. C. Lacerda, R. T. Carneiro, V. A. P. Defávari, M. T. V. Labate,C. A. Labate (2002). Production of transgenic Eucalyptus grandis x E. urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Functional plant biology, 29, 97-102.
[16]  Ho, C. K., S. H. Chang, J. Y. Tsay, C. J. Tsai, V. L. Chiang,Z. Z. Chen (1998). Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Reports, 17, 675-680.
[17]  Jefferson, R. A., T. A. Kavanagh,M. W. Bevan (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO journal, 6, 3901-3907.
[18]  J. L. Yao ,K. Lin-Wang. (2004). Eucalyptus transformation method. USA patent. PCT/NZ2004/000242. 2005-04-14.
[19]  Joyce, P., M. Kuwahata, N. Turner,P. Lakshmanan (2010). Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Reports, 29, 173-183.
[20]  Kajita, S., K. Osakabe, Y. Katayama, S. Kawai, Y. Matsumoto, K. Hata,N. Morohoshi (1994). Agrobacterium-mediated transformation of poplar using a disarmed binary vector and the overexpression of a specific member of a family of poplar peroxidase genes in transgenic poplar cell. Plant Science, 103, 231-239.
[21]  Mohri, T., N. Yamamoto,K. Shinohara (1996). Agrobacterium-mediated transformation of lombardy poplar (Populus nigra L. var. italica Koehne) using stem segments. Journal of Forest Research, 1, 13-16.
[22]  Mullins, K. V., D. J. Llewellyn, V. J. Hartney, S. Strauss,E. S. Dennis (1997). Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Reports, 16, 787-791.
[23]  Oliveira, Y., L. Adamuchio, J. Degenhardt-Goldbach, I. Gerhardt, J. Bespalhok, R. Dibax,M. Quoirin. 2011. Use of kanamycin for selection of Eucalyptus saligna genetically transformed plants., 147-148.: BioMed Central Ltd.
[24]  Padilla, I.,L. Burgos (2010). Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Reports, 29, 1203-1213.
[25]  Petri, C., S. López-Noguera, N. Alburquerque, J. Egea,L. Burgos (2008). An antibiotic-based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Science, 175, 777-783.
[26]  Prakash, M.,K. Gurumurthi (2009). Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology - Plant, 45, 429-434.
[27]  Spokevicius, A. V., K. Van Beveren, M. A. Leitch,G. Bossinger (2005). Agrobacterium-mediated in vitro transformation of wood-producing stem segments in eucalypts. Plant cell reports, 23, 617-624.
[28]  Thakur, A. K., S. Sharma,D. K. Srivastava (2005). Plant regeneration and genetic transformation studies in petiole tissue of Himalayan poplar (Populus ciliata Wall.). Current Science, 89, 664-668.
[29]  Wei, T. (2001). Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.). Cell Research, 11, 237-243.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133