全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2014 

乙烯对植物次生代谢产物合成的双重调控效应

DOI: 10.3724/SP.J.1259.2014.00626, PP. 626-639

Keywords: 乙烯,次生代谢产物,信号转导途径,双重调控

Full-Text   Cite this paper   Add to My Lib

Abstract:

?植物次生代谢产物是人类重要的药物及化工原料来源,其产生与植物正常的生长发育及对环境的适应密切相关,并受到多种因素的调控。乙烯作为一种植物内源激素,广泛参与植物的生长、发育、抗逆和次生代谢产物合成等重要生理过程的调控。该文综述了乙烯的信号转导机制及其调控作用;重点归纳了乙烯对植物次生代谢产物形成所表现出的双重调控效应,即在一定浓度范围内,乙烯对植物次生代谢产物的合成起促进作用,低于或超过该浓度范围则起抑制作用;并对今后该领域的研究方向进行了展望。

References

[1]  Ahsan, N, Lee, D.-G., Lee, S.-H., Lee, K.-W., Bahk, J. D., & Lee, B.-H. .A proteomic screen and identification of waterlogging-regulated proteins in tomato roots. [J].Plant and Soil, (2007). , 295
[2]  ((1-2), ):37--51.
[3]  Arimura, G, Kost, C., & Boland, W. .Herbivore-induced, indirect plant defences. [J].Biochim Biophys Acta,, (2005). , 1734
[4]  ((2), ):91--111.
[5]  Barry, CS., Llop-Tous, M. I., & Grierson, D. .The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. [J].Plant Physiol,, (2000). , 123
[6]  ((3), ):979--986.
[7]  Binder, BM., Mortimore, L. A., Stepanova, A. N., Ecker, J. R., & Bleecker, A. B..Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. [J].Plant Physiol,, (2004). , 136
[8]  ((2), ):2921--2927.
[9]  Binder, BM., Walker, J. M., Gagne, J. M., Emborg, T. J., Hemmann, G., Bleecker, A. B., et al. .The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. [J].Plant Cell,, (2007). , 19
[10]  ((2), ):509--523.
[11]  Biondi, S, Antognoni, F., Perellino, N. C., Sacchetti, G., Minghetti, A., & Poli, F. .Medium composition and methyl jasmonate influence the amount and spectrum of secondary metabolites in callus cultures of Zanthoxylum stenophyllum Hemsl. [J].Plant Biosystems,, (2004). , 138
[12]  ((2), ):117--124.
[13]  Broekaert, WF., Delaure, S. L., De Bolle, M. F., & Cammue, B. P. .The role of ethylene in host-pathogen interactions.[J].Annu Rev Phytopathol,, (2006). , 44,
[14]  (1):393--416.
[15]  Brown, RL., Kazan, K., McGrath, K. C., Maclean, D. J., & Manners, J. M. .A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis.[J].Plant Physiol,, (2003). , 132
[16]  ((2), ):1020--1032.
[17]  Buer, CS., Sukumar, P., & Muday, G. K. .Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis.[J].Plant Physiol,, (2006). , 140
[18]  ((4), ):1384--1396.
[19]  Chae, HS., Faure, F., & Kieber, J. J. .The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein.[J].Plant Cell,, (2003). , 15
[20]  ((2), ):545--559.
[21]  Chappell, J.The Biochemistry and Molecular Biology of Isoprenoid Metabolism.[J].Plant Physiol,, (1995). , 107
[22]  ((1), ):1--6.
[23]  Chen, L, Wang, T., Zhao, M., & Zhang, W. . Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level.[J].Plant Sci,, (2012)., 184,
[24]  (1):14--19.
[25]  Chen, YF., Etheridge, N., & Schaller, G. E. .Ethylene signal transduction.[J].Ann Bot,, (2005). , 95
[26]  ((6), ):901--915.
[27]  Cheng, A-X., Lou, Y.-G., Mao, Y.-B., Lu, S., Wang, L.-J., & Chen, X.-Y. .Plant terpenoids: Biosynthesis and ecological functions. [J].Journal of Integrative Plant Biology,, (2007). , 49
[28]  ((2), ):179--186.
[29]  Clay, NK., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. .Glucosinolate metabolites required for an Arabidopsis innate immune response. [J].Science,, (2009). , 323
[30]  ((5910),):95--101.
[31]  Dangl, JL., & Jones, J. D. .Plant pathogens and integrated defence responses to infection. [J].Nature,, (2001)., 411
[32]  ((6839),): 826--833.
[33]  De Boer, K, Tilleman, S., Pauwels, L., Vanden Bossche, R., De Sutter, V., Vanderhaeghen, R., et al.. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. [J].Plant J,, (2011). , 66
[34]  ((6), ):1053--1065.
[35]  De Luca, V, & St Pierre, B. .The cell and developmental biology of alkaloid biosynthesis. [J].Trends Plant Sci,, (2000). , 5
[36]  ((4), ):168--173.
[37]  Diezel, C, Allmann, S., & Baldwin, I. T. .Mechanisms of optimal defense patterns in Nicotiana attenuata: flowering attenuates herbivory-elicited ethylene and jasmonate signaling. [J].J Integr Plant Biol,, (2011). , 53
[38]  ((12), ):971--983.
[39]  Dixon, RA. .Natural products and plant disease resistance. [J].Nature,, (2001). , 411
[40]  ((6839),):843--847.
[41]  Dubos, C, Le Gourrierec, J., Baudry, A., Huep, G., Lanet, E., Debeaujon, I., et al. .MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. [J].Plant J,, (2008). , 55
[42]  ((6), ):940--953.
[43]  Efferth, T, Herrmann, F., Tahrani, A., & Wink, M. .Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin.[J].Phytomedicine,, (2011). , 18
[44]  ((11), ):959--969.
[45]  El-Kereamy, A, Chervin, C., Roustan, J. P., Cheynier, V., Souquet, J. M., Moutounet, M., et al. .Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries.[J].Physiologia Plantarum,, (2003). , 119
[46]  ((2), ):175--182.
[47]  Facchini, PJ. .ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications.[J].Annu Rev Plant Physiol Plant Mol Biol,, (2001). , 52,
[48]  (1):29--66.
[49]  Fujimoto, SY., Ohta, M., Usui, A., Shinshi, H., & Ohme-Takagi, M. .Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. [J].Plant Cell,, (2000). , 12
[50]  ((3), ):393--404.
[51]  Gagne, JM., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S. D., Yanagisawa, S., et al. .Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation.[J].Proc Natl Acad Sci U S A,, (2004). , 101
[52]  ((17), ):6803--6808.
[53]  Gantet, P, & Memelink, J. .Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. [J].Trends Pharmacol Sci,, (2002). , 23
[54]  ((12), ):563--569.
[55]  Gomez-Roldan, V, Fermas, S., Brewer, P. B., Puech-Pages, V., Dun, E. A., Pillot, J. P., et al. .Strigolactone inhibition of shoot branching. [J].Nature,, (2008). , 455
[56]  ((7210), ):189--194.
[57]  Gray, WM. .Hormonal regulation of plant growth and development.[J].PLoS Biol,, (2004). , 2
[58]  ((9), ):1270-1273
[59]  Guo, H, & Ecker, J. R. .The ethylene signaling pathway: new insights.[J].Curr Opin Plant Biol,, (2004). , 7
[60]  ((1), ):40--49.
[61]  Hanano, S, Domagalska, M. A., Nagy, F., & Davis, S. J. .Multiple phytohormones influence distinct parameters of the plant circadian clock. [J].Genes Cells,, (2006). , 11
[62]  ((12), ):1381--1392.
[63]  Heidstra, R, Yang, W. C., Yalcin, Y., Peck, S., Emons, A. M., van Kammen, A., et al. .Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. [J].Development,, (1997). , 124
[64]  ((9), ):1781--1787.
[65]  Herzog, TJ. .Recurrent ovarian cancer: how important is it to treat to disease progression? [J].Clin Cancer Res,, (2004). , 10
[66]  ((22), ):7439--7449.
[67]  Homann, V, Mende, K., Arntz, C., Ilardi, V., Macino, G., Morelli, G., et al..The isoprenoid pathway: cloning and characterization of fungal FPPS genes. [J].Curr Genet,, (1996). , 30
[68]  ((3),): 232--239.
[69]  Hossain, MA., Kim, S., Kim, K. H., Lee, S.-J., & Lee, H. .Flavonoid Compounds Are Enriched in Lemon Balm (Melissa officinalis) Leaves by a High Level of Sucrose and Confer Increased Antioxidant Activity. [J].Hortscience,, (2009). , 44
[70]  ((7), ):1907--1913.
[71]  Hughes, EH., & Shanks, J. V..Metabolic engineering of plants for alkaloid production.[J].Metab Eng,, (2002). , 4
[72]  ((1), ):41--48.
[73]  Iriti, M, & Faoro, F. .Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.[J].Int J Mol Sci,, (2009). , 10
[74]  ((8), ):3371--3399.
[75]  Jain, M, Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., et al. .F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. [J].Plant Physiol,, (2007). , 143
[76]  ((4), ):1467--1483.
[77]  Jeong, CS., Chakrabarty, D., Hahn, E. J., Lee, H. L., & Paek, K. Y. .Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. [J].Biochemical Engineering Journal,, (2006). , 27
[78]  ((3), ):252--263.
[79]  Jeong, SW., Das, P. K., Jeoung, S. C., Song, J. Y., Lee, H. K., Kim, Y. K., et al. . Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. [J].Plant Physiol,, (2010)., 154
[80]  ((3),):1514--1531.
[81]  Johnson, PR., & Ecker, J. R. .The ethylene gas signal transduction pathway: a molecular perspective. [J].Annu Rev Genet,, (1998). , 32,
[82]  (1):227--254.
[83]  Kamiyoshihara, Y, Iwata, M., Fukaya, T., Tatsuki, M., & Mori, H. .Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. [J].Plant J,, (2010). , 64
[84]  ((1), ):140--150.
[85]  Kerchev, PI., Fenton, B., Foyer, C. H., & Hancock, R. D. .Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. [J].Plant Cell Environ,, (2012). , 35
[86]  ((2), ):441--453.
[87]  Khan, NA. .Activity of 1-aminocyclopropane carboxylic acid synthase in two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity. [J].Photosynthetica,, (2004). , 42
[88]  ((3), ):477--480.
[89]  Lavola, A, Julkunen-Tiitto, R., de la Rosa, T. M., Lehto, T., & Aphalo, P. J. .Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. [J].Physiologia Plantarum,, (2000). , 109
[90]  ((3),): 260--267.
[91]  Lee-Parsons, CW. T. .Gas composition strategies for the successful scale-up of Catharanthus roseus cell cultures for the production of ajmalicine. [J].Phytochemistry Reviews,, (2007). , 6
[92]  ((2-3), ):419--433.
[93]  Legrand, S, Valot, N., Nicole, F., Moja, S., Baudino, S., Jullien, F., et al..One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the Labiate Salvia sclarea L.[J].Gene,, (2010). , 450
[94]  ((1-2), ):55--62.
[95]  Leon-Reyes, A, Du, Y., Koornneef, A., Proietti, S., Korbes, A. P., Memelink, J., et al..Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic Acid. [J].Mol Plant Microbe Interact,, (2010). , 23
[96]  ((2), ):187--197.
[97]  Linden, JC., Haigh, J. R., Mirjalili, N., & Phisaphalong, M. . Gas concentration effects on secondary metabolite production by plant cell cultures. [J].Adv Biochem Eng Biotechnol,, (2001)., 72,
[98]  ( 1):27--62.
[99]  Liu, HH., Tian, X., Li, Y. J., Wu, C. A., & Zheng, C. C.. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. [J].RNA,, (2008)., 14
[100]  ((5), ):836--843.
[101]  Liu, Q, & Chen, Y. Q. .Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. [J].Biochem Biophys Res Commun,, (2009). , 384
[102]  ((1), ):1--5.
[103]  Lorenzo, O, Piqueras, R., Sanchez-Serrano, J. J., & Solano, R..ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. [J].Plant Cell,, (2003). , 15
[104]  ((1), ):165--178.
[105]  Matsui, K, Umemura, Y., & Ohme-Takagi, M. .AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. [J].Plant J,, (2008). , 55
[106]  ((6), ):954--967.
[107]  McClellan, CA., & Chang, C..The role of protein turnover in ethylene biosynthesis and response. [J].Plant Sci,, (2008). , 175
[108]  ((1-2), ):24--31.
[109]  Mirjalili, N, & Linden, J. C. .Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: ethylene interaction and induction models. [J].Biotechnol Prog,, (1996). , 12
[110]  ((1), ):110--118.
[111]  Montiel, G, Zarei, A., Korbes, A. P., & Memelink, J..The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2. [J].Plant Cell Physiol,, (2011). , 52
[112]  ((3),): 578--587.
[113]  Moxon, S, Jing, R., Szittya, G., Schwach, F., Rusholme Pilcher, R. L., Moulton, V., et al. .Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. [J].Genome Res,, (2008). , 18
[114]  ((10), ):1602--1609.
[115]  Nambara, E, & Marion-Poll, A.. Abscisic acid biosynthesis and catabolism. [J].Annu Rev Plant Biol,, (2005)., 56,
[116]  (1): 165--185.
[117]  Nemhauser, JL., Hong, F., & Chory, J. .Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses.[J].Cell,, (2006). , 126
[118]  ((3),): 467--475.
[119]  Oudin, A, Mahroug, S., Courdavault, V., Hervouet, N., Zelwer, C., Rodriguez-Concepcion, M., et al. .Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. [J].Plant Mol Biol,, (2007). , 65
[120]  ((1-2), ):13--30.
[121]  Pan, Q, Chen, Y., Wang, Q., Yuan, F., Xing, S., Tian, Y., et al. .Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus.[J].Plant Growth Regulation,, (2010). , 60
[122]  ((2),): 133--141.
[123]  Pan, Z, Wang, H., & Zhong, J. .Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene.[J].Enzyme Microb Technol,, (2000). , 27
[124]  ((9), ):714--723.
[125]  Pan, ZW., Wang, H. Q., & Zhong, J. J. .Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene. [J].Enzyme and Microbial Technology,, (2000). , 27
[126]  ( (9), ):714--723.
[127]  Pilar Lopez-Gresa, M, Torres, C., Campos, L., Lison, P., Rodrigo, I., Maria Belles, J., et al. . Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. [J].Environmental and Experimental Botany,, (2011)., 74,
[128]  (1):216--228.
[129]  Pre, M, Atallah, M., Champion, A., De Vos, M., Pieterse, C. M., & Memelink, J.. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. [J].Plant Physiol,, (2008). , 147
[130]  ((3), ):1347--1357.
[131]  Pulido, A, & Laufs, P..Co-ordination of developmental processes by small RNAs during leaf development. [J].J Exp Bot,, (2010). , 61
[132]  ((5), ):1277--1291.
[133]  Rao, SR., & Ravishankar, G. A. .Plant cell cultures: Chemical factories of secondary metabolites. [J].Biotechnol Adv,, (2002). , 20
[134]  ((2), ):101--153.
[135]  Ruther, J, & Kleier, S. .Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. [J].J Chem Ecol,, (2005). , 31
[136]  ((9),): 2217--2222.
[137]  Santner, A, Calderon-Villalobos, L. I., & Estelle, M. .Plant hormones are versatile chemical regulators of plant growth. [J].Nat Chem Biol,, (2009). , 5
[138]  ((5), ):301--307.
[139]  Shibli, RA., Smith, M. A. L., & Kushad, M. .Headspace ethylene accumulation effects on secondary metabolite production in Vaccinium pahalae cell culture. [J].Plant Growth Regulation,, (1997). , 23
[140]  ((3), ):201--205.
[141]  Shoji, T, Kajikawa, M., & Hashimoto, T. . Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. [J].Plant Cell,, (2010)., 22
[142]  ((10), ):3390--3409.
[143]  Shoji, T, Nakajima, K., & Hashimoto, T..Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. [J].Plant Cell Physiol,, (2000). , 41
[144]  ((9), ):1072--1076.
[145]  Singh, K, Foley, R. C., & Onate-Sanchez, L. .Transcription factors in plant defense and stress responses. [J].Curr Opin Plant Biol,, (2002). , 5
[146]  ((5), ):430--436.
[147]  Sommer, S, Kohle, A., Yazaki, K., Shimomura, K., Bechthold, A., & Heide, L. .Genetic engineering of shikonin biosynthesis hairy root cultures of Lithospermum erythrorhizon transformed with the bacterial ubiC gene. [J].Plant Mol Biol,, (1999). , 39
[148]  ((4), ):683--693.
[149]  Stone, SL., & Callis, J. .Ubiquitin ligases mediate growth and development by promoting protein death. [J].Curr Opin Plant Biol,, (2007). , 10
[150]  ((6), ):624--632.
[151]  Sudha, G, & Ravishankar, G. A..Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects.[J].Plant Cell Tissue and Organ Culture,, (2002). , 71
[152]  ((3), ):181--212.
[153]  Thain, SC., Vandenbussche, F., Laarhoven, L. J., Dowson-Day, M. J., Wang, Z. Y., Tobin, E. M., et al. .Circadian rhythms of ethylene emission in Arabidopsis. [J].Plant Physiol,, (2004). , 136
[154]  ((3), ):3751--3761.
[155]  Tsuchisaka, A, & Theologis, A..Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. [J].Proc Natl Acad Sci U S A,, (2004a). , 101
[156]  ((8), ):2275--2280.
[157]  Tsuchisaka, A, & Theologis, A. .Unique and overlapping expression patterns among the arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. [J].Plant Physiology,, (2004b). , 136
[158]  ((2), ):2982--3000.
[159]  Vaishnav, P, & Demain, A. L.. Unexpected applications of secondary metabolites.[J].Biotechnol Adv,, (2011)., 29
[160]  ((2), ):223--229.
[161]  van der Fits, L, & Memelink, J..ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. [J].Science,, (2000). , 289
[162]  ((5477), ):295--297.
[163]  van der Fits, L, & Memelink, J..The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. [J].Plant J,, (2001). , 25
[164]  ((1), ):43--53.
[165]  Vanhala, L, Eeva, M., Lapinjoki, S., Hiltunen, R., & Oksman-Caldentey, K. M. . Effect of growth regulators on transformed root cultures of Hyoscyamus muticus. [J].Journal of Plant Physiology,, (1998)., 153
[166]  ((3-4), ):475--481.
[167]  Verpoorte, R, Contin, A., & Memelink, J..Biotechnology for the production of plant secondary metabolites. [J].Phytochemistry Reviews,, (2002). , 1
[168]  ((1), ):13--25.
[169]  Vining, LC. . Functions of secondary metabolites.[J].Annu Rev Microbiol,, (1990)., 44,
[170]  (1):395--427.
[171]  Vom Endt, D, Kijne, J. W., & Memelink, J..Transcription factors controlling plant secondary metabolism: what regulates the regulators? [J].Phytochemistry,, (2002). , 61
[172]  ((2), ):107--114.
[173]  von Dahl, CC., Winz, R. A., Halitschke, R., Kuhnemann, F., Gase, K., & Baldwin, I. T. .Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. [J].Plant J,, (2007). , 51
[174]  ((2), ):293--307.
[175]  Wang, KL., Li, H., & Ecker, J. R..Ethylene biosynthesis and signaling networks.[J].Plant Cell,, (2002). , 14
[176]  (Suppl, ):131--151.
[177]  ((3), ):443--455.
[178]  Woeste, KE., & Kieber, J. J. .A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. [J].Plant Cell,, (2000a). , 12
[179]  Woeste, KE., & Kieber, J. J. .A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. [J].Plant Cell,, (2000b). , 12
[180]  ((3),): 443--455.
[181]  Wu, J, Hettenhausen, C., Schuman, M. C., & Baldwin, I. T. .A comparison of two Nicotiana attenuata accessions reveals large differences in signaling induced by oral secretions of the specialist herbivore Manduca sexta.[J].Plant Physiol,, (2008). , 146
[182]  ((3), ):927--939.
[183]  Xie, F, Frazier, T. P., & Zhang, B.. Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). [J].Planta,, (2010)., 232
[184]  ((2), ):417--434.
[185]  Yanagisawa, S, Yoo, S. D., & Sheen, J. .Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. [J].Nature,, (2003). , 425
[186]  ((6957),): 521--525.
[187]  Zhang, W, Zou, A., Miao, J., Yin, Y., Tian, R., Pang, Y., et al..LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in Lithospermum erythrorhizon. [J].Plant Biol (Stuttg),, (2011). , 13
[188]  ((2), ):343--348.
[189]  Zhao, J, Zheng, S. H., Fujita, K., & Sakai, K. .Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. [J].J Exp Bot,, (2004). , 55
[190]  ((399), ):1003--1012.
[191]  Zhong, JJ.. Plant cell culture for production of paclitaxel and other taxanes. [J].J Biosci Bioeng,, (2002)., 94
[192]  ((6), ):591--599.
[193]  Zhong, S, Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., et al. .EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. [J].Proc Natl Acad Sci U S A,, (2009). , 106
[194]  ((50), ):21431--21436.
[195]  Zhou, M-L., Hou, H.-L., Zhu, X.-M., Shao, J.-R., Wu, Y.-M., & Tang, Y.-X. .Molecular regulation of terpenoid indole alkaloids pathway in the medicinal plant, Catharanthus roseus. [J].Journal of Medicinal Plants Research,, (2010). , 4
[196]  ((25), ):2760--2772.
[197]  Zhu, Z, An, F., Feng, Y., Li, P., Xue, L., A, M., et al..Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. [J].Proc Natl Acad Sci U S A,, (2011). , 108
[198]  ((30),): 12539--12544.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133