全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2014 

香蕉MaASR1基因的抗干旱作用

DOI: 10.3724/SP.J.1259.2014.00548, PP. 548-559

Keywords: 香蕉,ASR基因,拟南芥,干旱胁迫,ABA

Full-Text   Cite this paper   Add to My Lib

Abstract:

?ASR(ABA,stress,ripeninginducedprotein)是一类响应植物干旱胁迫的关键转录因子,在许多植物中已有报道,然而尚未见香蕉(Musaacuminata)中ASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个ASR基因,即MaASR1(登录号为AY628102)。干旱胁迫下,该基因在叶片中的表达量高于根部。将MaASR1转入拟南芥(Arabidopsisthaliana),Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现,此两转基因株系的叶片变小且变厚;Northern和Western检测结果表明,MaASR1在L14和L38中表达。控水处理后,L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后,对MaASR1转基因株系中ABA/胁迫响应基因的表达分析,发现MaASR1可增强转基因株系对ABA信号的敏感度,但不能增强植株依赖于ABA途径的抗旱性。

References

[1]  李燕强, 金志强, 徐碧玉(2005).香蕉果实RNA提取方法的改进和比较.福建热作科技30, 237-240.
[2]  张治安, 陈展宇(2008). 植物生理学实验技术. 长春: 吉林大学出版社. pp. 192-194.
[3]  陈建辉, 李荣华, 郭培国, 夏岩石, 田长恩, 缪绅裕(2011). 干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响. 植物学报46, 28-36.
[4]  Sambrook J, Russell D (黄培堂等译) (2002). 分子克隆实验指南(第3版). 北京: 科学出版社. pp. 492-509.
[5]  Amitai-Zeigerson H, Scolnik PA, Bar-Zvi D (1995). Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci 110, 205-213.
[6]  Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
[7]  Cortés AJ, Chavarro MC, Madri?án S, This D, Blair MW (2012). Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genet 13, 58-71.
[8]  Dóczi R, Csanaki C, Bánfalvi Z (2002). Expression and promoter activity of the desiccation-specific Solanum tuberosum gene, StDS2. Plant Cell Environ 25, 1197-1203.
[9]  Fischer I, Camus-kulandaivelu L, Allal F, Stephan W (2011). Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. New Phytol 190, 1032-1044.
[10]  Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G (2013). TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36: 1449-1464.
[11]  Joo J, Lee Y H, Choi D H, Cheong J, Kim Y, Song S (2013).Rice ASR1 has function in Abiotic stress tolerance during early growth stages of rice. J Korean Soc Appl Biol Chem 56, 349-352.
[12]  Silhavy D, Hutvagner G, Barta E, Bánfalvi Z (1995). Isolation and characterization of a water-stress-inducible cDNA clone from Solanum chacoense. Plant Mol Biol 27, 587-595.
[13]  Thomashow MF (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599.
[14]  Padmanabhan V, Dias DMAL, Newton RJ (1997). Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Mol Biol 35, 801-807.
[15]  Vaidyanathan R, Kuruvilla S, Thomas G (1999).Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci 140, 25-36.
[16]  Wang W, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14.
[17]  Xiong L, Ishitani M, Lee H, Zhu JK (2001).The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression. Plant Cell 13, 2063-2083.
[18]  Xiong L, Zhu JK (2003). Regulation of abscisic acid biosynthesis. Plant Physiol 133, 29-36.
[19]  Xu BY, Su W, Liu JH, Wang JB, Jin ZQ (2007). Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta 226, 529~539.
[20]  Yamaguchi-Shinozakiaib K, Shinozaki K (1994). A nove1 cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6, 251-264
[21]  Zhang ZB, Xu P, Shao HB, Liu MJ, Fu ZY, Chu LY (2011). Advances and prospects: biotechnologically improving crop water use efficiency. Crit Rev Biotechnol 31, 281-293.
[22]  Zhu J, Huang X, Liu T, Gao S, Chen J (2012). Cloning and function analysis of a drought-inducible gene associated with resistance to Curvularia leaf spot in maize. Mol Biol Rep 39, 7919-7926.
[23]  Sakuma Y, Maruyama K, Yamaguchi-Shinozakia K (2006). Functional Analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18, 1292-1309.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133