全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2014 

PHOT2介导拟南芥下胚轴向光弯曲调节子的筛选与鉴定

DOI: 10.3724/SP.J.1259.2014.00254, PP. 254-261

Keywords: 拟南芥,蓝光,下胚轴向光弯曲,突变体筛选

Full-Text   Cite this paper   Add to My Lib

Abstract:

?向光素(PHOT1和PHOT2)功能冗余调节单侧强蓝光诱导的拟南芥(Arabidopsisthaliana)黄化苗下胚轴向光弯曲表现功能冗余,限制了人们对PHOT2信号转导机制的深入研究。通过化学诱变剂甲基磺酸乙酯(EMS)诱变拟南芥phot1突变体,避开PHOT1基因的干扰,寻找PHOT2下游信号分子。研究结果表明,已成功筛选到1株遗传稳定的下胚轴向蓝光不弯曲突变体。遗传分析结果显示,该突变体可能是PHOT2下游信号分子突变,将其命名为p2sa1(phototropin2signalingassociated1)。用100μmol·m–2·s–1强蓝光单侧照射,phot1p2sa1下胚轴向光弯曲缺失,呈现phot1phot2双突变的表型,然而phot1p2sa1在强蓝光下叶绿体避光正常,明显不同于phot1phot2。实验证实P2SA1可能位于PHOT2的下游,参与调节PHOT2介导的拟南芥下胚轴向光弯曲反应。

References

[1]  Sullivan S, Thomson CE, Lamont DJ, et al (2008). In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin1. Mol Plant 1, 178–194.
[2]  Takemiya A, Inoue S, Doi M, et al (2005). Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17, 1120–1127.
[3]  刘浩, 王棚涛, 安国勇, 周云, 樊丽娜 (2010). 拟南芥干旱相关突变体的远红外筛选及基因克隆. 植物学报 45, 220–225
[4]  Babourina O, Newman IA, Shabala S (2002). Blue light induced kinetics of H+ and Ca2+ fuxes in etiolated wild type and phototropin- mutant Arabidopsis seedlings. Proc Natl Acad Sci USA 99, 2433–2438.
[5]  Babourina O, Godfreg L, Voltchanskii K (2004). Changes in ion fluxes during phototropic bending of etilated oat coleoptiles. Ann Botany 94, 187–194.
[6]  Baum G, Long JC, Jenkins GI, et al (1999). Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96, 13554–13559.
[7]  Blakeslee JJ, Bandyopadhyay A, Peer WA, et al (2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134, 28–31.
[8]  Carbonnel Md, Davis P, Roelfsema MRG, et al (2010). The Arabidopsis PSK2 protein is a phototropin signaling element that regulates leaf flattening and Leaf Positioning. Plant physiol 152, 1391–1405.
[9]  Demarsy E, Fankhauser C (2009). Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12, 69–74.
[10]  Folta KM, Lieg EJ, Durham T, et al (2003). Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133, 1464–1470.
[11]  Folta KM, Kaufman LS (2003). Phototropin 1 is required for high-fluence blue light-mediated mRNA destabilization. Plant Mol Biol 51, 609–618.
[12]  Friml J, Yang X, Michniewicz M, et al (2004). PINOID dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865.
[13]  Haga K, Iino M (2006). Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J Exp Bot 57, 837–847.
[14]  Harada A, Shimazaki K (2007). Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol 83, 102–111.
[15]  Huala E, Oeller PW, Liscum E, et al (1997). Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278, 2120–2123.
[16]  Inada S, Ohgishi M, Mayama T, et al (2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887–896.
[17]  Inoue S, Kinoshita T, Matsumoto M, et al (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105, 5626–5631.
[18]  Inoue S, Takemiya A, Shimazaki K (2010). Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol 13, 587–593.
[19]  Kagawa T, Sakai T, Suetsugu N, et al (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141.
[20]  Kasahara M, Kagawa T, Oikawa K, et al (2002). Chloroplast avoidance movement reduces photodamage in plant. Nature 420, 829–832.
[21]  Kinoshita T, Doi M, Suetsugu N, et al (2001). phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660.
[22]  Lariguet P, Schepens I, Hodgson D, et al (2006). PKS1 is a phototropin1 binding protein required for phototropism. Proc Natl Acad Sci USA 103, 10134–10139.
[23]  Michio D, Ayako S, Takashi E, et al (2004). A transgene encoding a blue-light receptor,phot1,restores blue-light responses in the Arabidopsis phot1phot2 double mutant. J Exp Bot 56, 517–523.
[24]  Motchoulski A, Liscum E (1999). Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961–964.
[25]  Ohgishi M, Saji K, Okada, Sakai T (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101, 2223–2228.
[26]  Sakai T, Kagawa T, Kasahara M, et al (2001). Arabidopsis nph1 and npl1:blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98, 6969–6974.
[27]  Sakai T, Wada T, Ishiguro S, et al (2000). RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225–236.
[28]  Stone BB, Stowe-Evans EL, Harper RM, et al (2008). Distruption in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1, 129–144.
[29]  Tseng TS and Briggs WR (2010). The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses. Plant Cell 22, 1-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133