全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2014 

应用基因芯片分析甘蓝型油菜柱头特异表达基因

DOI: 10.3724/SP.J.1259.2014.00246, PP. 246-253

Keywords: 甘蓝型油菜,基因表达谱,基因芯片,实时定量PCR,柱头

Full-Text   Cite this paper   Add to My Lib

Abstract:

?以甘蓝型油菜(Brassicanapus)野生型(宁油10号)及其柱头授粉功能缺失突变体FS-M1为材料,使用油菜基因表达谱芯片筛选甘蓝型油菜柱头特异表达基因。在含有16540个基因的油菜基因表达谱芯片中(43803探针),获得了4410条差异表达探针,选择部分差异表达基因进行实时定量PCR,所得结果与芯片检测结果相吻合。其中,野生型较FS-M1显著上调且获得209个功能注释的探针,对应198个基因,这些特异表达的基因主要富集在水解酶、转移酶、氧化还原酶和转录因子中;涉及较大的基因家族包括:细胞色素P450基因、GDSL脂肪酶/水解酶基因、ABC转运蛋白基因、myb转录因子基因、bHLH转录因子基因、过氧化物酶家族和受体激酶基因等。推测这些基因与甘蓝型油菜柱头发育及授粉功能有关。

References

[1]  参考文献
[2]  陈新军, 戚存扣, 张洁夫 (2003). 油菜(Brassica napus) 雌性不育突变体FS-M1 的生物学特性研究. 中国油料作物学报25, 12-15.
[3]  陈新军, 戚存扣, 张洁夫, 浦惠明, 高建芹, 傅寿仲 (2005) . 甘蓝型油菜雌性不育突变体FS1花器官形态结构研究. 作物学报31,1239-1240.
[4]  陈小平, 朱方何, 洪彦彬, 刘海燕, 张二华, 周桂元, 李少雄, 钟 旎, 温世杰 ,李杏瑜, 梁炫强(2010). 两个南方花生主栽品种荚果与叶片基因表达谱分析.作物学报 37(8): 1378?1388.
[5]  杜士云, 阳菁, 王守海, 王德正, 吴爽, 罗彦长, 李阳生 (2010). 应用基因芯片分析短日低温条件下新型粳稻光温敏核质互作不育系育性相关基因. 中国水稻科学 24(6): 672-680.
[6]  李春宏a 陈新军, 戚存扣 (2012) .甘蓝型油菜雌性不育突变体FS-M1乳突细胞的细胞学观察.植物学报47 (1) : 36 -43 .
[7]  李春宏 b陈新军, 戚存扣 (2012).甘蓝型油菜授粉功能缺失突变体及其野生型柱头差异蛋白研究中国农业科学45(22): 4728-4737 .
[8]  蔺占兵, 马庆虎, 徐洋 (2003). 木质素的生物合成及其分子调控.自然科学进展13(5): 455-461.
[9]  彭一波. 甘蓝SRK的S域及SCR酵母表达载体的构建及其相互作用区段的研究[C];西南大学硕士论文 2011,11-14.
[10]  张幸果(2008). 甘蓝型油菜自交不亲和性的初步研究[C]. 硕士论文. 武汉:华中农业大学. 3-9.
[11]  McInnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ (2006). The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J Exp Bot 57: 1835-1846.
[12]  Pastuglia M, Swarup R, Rocher A, Saindrenan P, Roby D, Dumas C,Cock JM (2002). Comparison of the expression patterns of two small gene families of S gene family receptor kinase genes during the defense response in Brassica oleracea and Arabidopsis thaliana. Gene 282: 215–225.
[13]  Samuel MA, Chonga YT, Haasena KE, Aldea-Brydgesa MG, Stone SL, Goring DR (2009). Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. The Plant Cell, 21: 2655-2671.
[14]  Swanson R, Clark T, Preuss D (2005). Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sexual Plant Reproduction 18: 163-171.
[15]  Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB (2005). Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiology, 2005, 138: 977-989.
[16]  Wu X, Shao X, Meng X, Zhang X, Zhu L, Liu S, Lin J, Xiao H (2003). Genome-wide analysis of microRNA and mRNAexpression signatures in hydroxycamptothecin resistant gastric cancer cells. Acta Pharmacologica Sinica 32: 259–269.
[17]  Zhao P, Wang L L, Han L, Wang J, Yao Y, Wang H, Du X, Luo Y, Xia G (2010). Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.).Journal of Proteome Research 9(2): 1076-1087.
[18]  杨致荣, 王兴春, 李西明, 杨长登 (2004). 高等植物转录因子的研究进展. 遗传26(3): 403-408.
[19]  Bailey-Serres J, Mittler R (2003). The Roles of Reactive Oxygen Species in Plant Cells Plant Physiology, 2006 141: 311.
[20]  Cavell AC, Lydiate D, Parkin IAP, Dean C, Trick M (1998). Colinearity between a 30-centimorgan segment in Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41: 62-69.
[21]  Chen X, Li J, Hu W, Yang S, Gong Y (2010). Differential gene expression of human keratinocyte HaCaT cells induced by fibroblast growth factor 10 treatment. Mol Cell Biochem 342(1-2): 71-85.
[22]  Dwyer KG, Kandasamy MK, Mahosky DI , Acciai J , Kudish BI , Miller JE , Nasrallah ME , Nasrallah JB (1994). A superfamily of S locus- related sequences in Arabidopsis : diverse structures and expression patterns. Plant Cell 6: 1829-1843.
[23]  Hiscock SJ, Bown D, Gurr SJ, Dickinson HG (2002). Serine esterases are required for pollen tube penetration of the stigma in Brassica. Sexual Plant Reproduction 15: 65-74.
[24]  Hiscock SJ, Bright J, McInnis SM, Desikan R, Hancock, JT (2007). Signalling on the stigma: potential new roles for ROS and NO in plant signalling. Plant Signaling and Behaviour 2: 23-24.
[25]  Jiang Y, Deyholos MK. Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola (Brassica napus L.) (2010). Plant Cell Reports 29(4): 327 - 342.
[26]  Jiang Y, Yang B, Harris NS, Deyholos MK (2007). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany 58(13): 3591–3607.
[27]  Kang YR, Nasrallah JB (2001). Use of genetically ablated stigmas for the isolation of genes expressed specifically in the stigma epidermis. Sex Plant Reprod 14: 85-94.
[28]  Li CH, Fu SX, Chen XJ, Qi CK (2012). Phenotypic characterization and genetic analysis of a partially female-sterile mutant in Brassica napus. Plant Science 185: 112-117.
[29]  Li M, Xu W, Yang W, Kong Z, Xue Y (2007). Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma of rice. Plant Physiology 144: 1797-1812.
[30]  Marcus A, Samuel MA, Yashwanti MY, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR (2008). Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis. Plant Physiol 147(4): 2084-95.
[31]  Yu WB, Gao SH, Yin CY, Zhou Y, Ye BC (2011). Comparative transcriptome analysis of bacillus subtilis responding to dissolved oxygen in adenosine fermentation. PLoS One 6(5): e20092.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133