全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2011 

拟南芥根生长缺陷突变体rei1的分离和鉴定

DOI: 10.3724/SP.J.1259.2011.00498, PP. 498-505

Keywords: 拟南芥,图位克隆,REI1,根形态

Full-Text   Cite this paper   Add to My Lib

Abstract:

?植物体根发育是一个复杂的过程,尽管对其研究颇多,但对其中的分子机制尚缺乏足够认识。以模式植物拟南芥(Arabidopsisthaliana)为研究材料,在T-DNA突变体库中分离到一个拟南芥根生长缺陷突变体rei1(rootelongationinhibited1)。通过表型分析发现,rei1在生长发育方面与野生型存在明显的差异,突变体的根较野生型短,且角果较小,花出现部分的败育。对突变体进行显微结构分析,发现突变体的根在内部结构上表现为表皮及皮层细胞形态不规则,排列疏松且横向膨大。遗传学分析表明,rei1是单基因隐性突变且与一个T-DNA插入共分离,通过图位克隆的方法成功分离了缺失的候选基因。以上研究结果表明,REI1对植物的根发育具有非常重要的调节作用。

References

[1]  Callahan HS, Pigliucci M, Schlichting CD (1997). Developmental phenotypic plasticity: where ecology and evolution meet molecular biology. Bioessays 19:519-525
[2]  Sternberg D, Mandels GR (1979). Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 1979 139:761-769
[3]  Davies WJ, Bacon MA (2003). Adaptation of roots to drought. In Root Ecology (Ecological Studies) (Vol. 168) (de Kroon, H. and Visser, E.J.W., eds), pp. 173–192, Springer-Verla
[4]  Fitter AH (1991). Characteristics and functions of root systems.In Plant Roots: The Hidden Half(Waisel, Y., Eshel, A. and Kafkafi, U.,eds). New York: Marcel Dekker, pp. 3–25
[5]  Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555-567
[6]  Hose E (2002). Abscisic acid in roots biochemistry and physiology, In Plant Roots: The Hidden Half (3rd edn) (Waisel, Y. et al., eds), pp. 435–448, Marcel Dekke
[7]  Iyer-Pascuzzi AS, Benfey PN (2009). Transcriptional networks in root cell fate specification. Biochim Biophys Acta 1789:315-325
[8]  Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993). Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57-70
[9]  Carpita NC, Gibeaut DM (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1-30
[10]  Jan KP, Anna N, Ewa K (2006). Ethylene and in vitro rooting of rose shoots. Plant Growth Regul 50:23-28
[11]  Jha AK, Dahleen LS, Suttle JC (2007). Ethylene influences green plant regeneration from barley callus. Plant Cell Rep 26:285-290
[12]  Kramer PJ, Boyer JS (1995). Water Relations of Plants and Soils. Academic Press, Inc., San Diego, USA
[13]  Liu YG, Whittier RF (1995).Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674-681
[14]  Lukowitz W, Gillmor CS, Scheible WR (2000). Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123:795-805
[15]  Lopez-Bucio J, Cruz-Ramirez A , Herrera-Estrella L (2003). The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287
[16]  Malamy JE (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67-77
[17]  Nibau C, Gibbs DJ, Coates JC (2008). Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595-614
[18]  Sun J, Niu QW, Tarkowski P, Zheng B, Tarkowska D, Sandberg G, Chua NH, Zuo J (2003). The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol 131:167-176

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133