全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2011 

拟南芥GATL12基因影响叶绿体的形成

DOI: 10.3724/SP.J.1259.2011.00379, PP. 379-385

Keywords: 拟南芥,叶绿体发育,胚胎发生,谷氨酰胺氨基转移酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

?谷氨酰胺氨基转移酶(GATase)能够将谷氨酰胺上的氨基基团转移到底物上形成新的一碳氮基团。GATase有两种类型,即Class-I(trpG型)和Class-II(purF型)。拟南芥(Arabidopsisthaliana)基因组中有13个基因编码Class-I类似蛋白(GATLs),其生物学功能尚不清楚。首先分离到拟南芥GATL12基因的2个T-DNA插入突变体,分别命名为gatl12-1和gatl12-2。然后观察发现在这2个突变体的杂合植株中,大部分植株的胚珠发育到第8天时,由于叶绿体的积累而呈现绿色,其余植株(约有25%)的胚珠为白色。将从杂合突变体植株上收获的种子播种在1/2MS培养基上,有25%的幼苗发育成黄化苗。经PCR检测,这些黄化苗为GATL12的纯合突变体,RT-PCR法在黄化苗中检测不到GATL12基因的转录本。电镜观察表明,突变体中的叶绿体不能正常发育。上述结果表明,GATL12基因在拟南芥的叶绿体发育过程中具有重要作用。

References

[1]  Anand R, Hoskins AA, Stubbe J, Ealick SE (2004). Domain organization of Salmonella typhimurium formylglycinamide ribonucleotide amidotransferase revealed by X-ray crystallography. Biochemistry 43, 10328-10342.
[2]  Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007). Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52, 296–308.
[3]  Aluru MR, Yu F, Fu A and Rodermel S (2006). Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J Exp Bot 31, 1–11.
[4]  Apuya NR, Yadegari R, Fischer RL, Harada JJ, Goldberg RB, Harada JH (2002). RASPBERRY3 gene encodes a novel protein important for embryo development. Plant Physiol 129, 691–705.
[5]  Bauer J, Hiltbrunner A, Kessler F (2001). Molecular biology of chloroplast biogenesis: gene expression, proein import and inraorganellar sorting. Cell Mol Life Sci 58, 420-433.
[6]  Buchanan JM (1973 ). The amidotransferases. Adv. Enzymol. Relat. Areas Mol Biol 39, 91-183.
[7]  Crawford IP (1989). Evolution of a biosynthetic pathway: the tryptophan paradigm.
[8]  Annu. Rev Microbiol 43, 567-600.
[9]  Goldschmidt-Clermont M (1998). Coordination of nuclear and chloroplast gene expression in plant cells. Int Rev Cytol 177, 115-180.
[10]  Goffman FD, Alonso AP, Schwender J, Shachar-Hill Y, Ohlrogge JB (2005). Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol 138, 2269–2279.
[11]  Kovacheva S, Bedard J, Patel R, Dudley P, Twell D, Rios G, Koncz C and Jarvis P (2005). In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J 41, 412–428.
[12]  Kobayashi K, Suzuki M, Tang J, et al (2007). LOVASTATIN INSENSITIVE 1, a novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. Plant Cell Physiol 48, 322–331.
[13]  Leister D (2003).Chloroplast research in the genomic age. Trends Genet 19, 6147–6156.
[14]  Liang Q, Lu X, Jiang L, Wang C, Fan Y and Zhang C (2010). EMB1211 is required for normal embryo development and influences chloroplast biogenesis in Arabidopsis. Physiologia Plantarum 140, 380–394.
[15]  Massiere F, Badet-Denisot MA (1998). The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci 54, 205-222.
[16]  Mansfield SG, Briarty LG (1991). Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69, 461-476.
[17]  McElver J, Tzafrir I, Aux G et al (2001). Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159, 1751–1763.
[18]  Mizote T, Tsuda M, Nakazawa T, Nakayama H (1996). The thiJ locus and its relation to phosphorylation of hydroxymethylpyrimidine in Escherichia coli. Microbiology 142, 2969-2974.
[19]  Nyunoya H, Lusty CJ (1984). Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain. J Biol Chem 259, 9790-9798.
[20]  Oelmuller R (1989). Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem. Photobiol 49, 61229–239.
[21]  Ruuska SA, Schwender J, Ohlrogge JB (2004). The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136, 2700–2709.
[22]  Ruppel NJ, Hangarter RP (2007). Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana. BMC Plant Biol 7, 37–46.
[23]  Staehelin LA, Newcomb EH (2000). Membrane structure and membranous organelles. In RB Buchanan, W Gruissem, RL Jones, eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Biology, Rockville, MD. pp. 2–50.
[24]  Schultz P, Jensen WA (1968). Capsella embryogenesis: the early embryo. J Ultrastruct Res 22, 376-392.
[25]  Tesmer JJ, Klem TJ, Deras ML, Davisson VJ, Smith JL (1996). The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Nat Struct Biol 3, 74-86.
[26]  Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D and Meinke D (2003). The Arabidopsis SeedGenes Project. Nucleic Acids Res 31, 90–93.
[27]  Taylor WC (1989). Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol Plant Mol Biol 40, 211–233.
[28]  Uwer U, Willmitzer L, Altmann T (1998). Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development. Plant Cell 10, 1277–1294.
[29]  Vothknecht UC, Westhoff P (2001). Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta 1541, 91–101.
[30]  Weng ML, Zalkin H (1987). Structural role for a conserved region in the CTP synthetase glutamine amide transfer domain. J Bacteriol 169, 3023-3028.
[31]  Xu XM, M?ller SG (2004) AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 101, 9143–9148.
[32]  Zalkin H, Argos P, Narayana SV, Tiedeman AA, Smith JM (1985). Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase.
[33]  J Biol Chem 260, 3350-3354.
[34]  Davidson JN, Chen KC, Jamison RS, Musmanno LA, Kern CB (1993). The evolutionary history of the first three enzymes in pyrimidine biosynthesis. Bioessays 15, 157-164.
[35]  Garcion C, Guilleminot J, Kroj T, et al (2006). AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis. Plant J 48, 895–906.
[36]  Halio SB, Blumentals ,II, Short SA, Merrill BM, Kelly RM (1996). Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178, 2605-2612.
[37]  Harrak H, Lagrange T, Bisanz-Seyer C, Lerbs-Mache S, Mache R (1995). The expression of nuclear genes encoding plastid ribosomal proteins precedes the expression of chloroplast genes during early phases of chloroplast development. Plant Physiol 108, 685–692.
[38]  Horvath MM, Grishin NV (2001). The C-terminal domain of HPII catalase is a member of the type I glutamine amidotransferase superfamily. Proteins 42, 230-236.
[39]  Hod Y, Pentyala SN, Whyard TC, El-Maghrabi MR (1999). Identification and characterization of a novel protein that regulates RNA-protein interaction. J Cell Biochem 72, 435-444.
[40]  Huang X, Zhang X, Yang S (2009). A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis. Cell Res 19, 1205–1216.
[41]  Knochel T, Ivens A, Hester G, Gonzalez A, Bauerle R, Wilmanns M, Kirschner K, Jansonius JN (1999). The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. Proc Natl Acad Sci U S A 96, 9479-9484.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133