全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2011 

SLC/AGO1基因控制拟南芥细胞分裂与定向伸长

DOI: 10.3724/SP.J.1259.2011.00370, PP. 370-378

Keywords: AGO1,细胞分裂,细胞伸长,叶片形状,转录后基因沉默

Full-Text   Cite this paper   Add to My Lib

Abstract:

?植物通过控制细胞分裂和伸长决定器官的形状。为了研究器官形状决定的分子机理,通过EMS诱变分离得到一个叶形细长的拟南芥突变体。细胞生物学观察发现,该基因突变不仅影响了生长点中的细胞分裂,也影响了叶片细胞的形状和数目,其表皮细胞凸起数明显减少,呈单轴向伸长,因此将该突变体定名为slenderleavesandcells(slc)。有趣的是,不同组织内细胞分裂和伸长受到不同程度的影响,说明SLC基因在协调细胞分裂和伸长过程中起关键作用。图位克隆结果表明,SLC与小RNA介导的基因沉默相关基因AGO1等位,其第574位组氨酸突变为酪氨酸。slc和ago1杂交F1代植物呈现突变体表型,证明AGO1和SLC确实为同一基因。以上结果表明,SLC/AGO1所介导的转录后基因沉默对控制植物器官和细胞形状决定均起重要作用。

References

[1]  Arkebuer TJ, Norman JM (1995). From cell growth to leaf growth: I. Coupling cell division and cell expansion. Agron J 87, 99–105
[2]  Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971
[3]  Bowman JL, Eshed Y, Baum SF (2002). Establishment of polarity in angiosperm lateral organs. Trends Genet 18, 134–141
[4]  Braybrook SA and Kuhlemeier C (2010). How a plant builds leaves. Plant Cell 22, 1006-1018
[5]  Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M and Benning C (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. The EMBO Journal 17, 170–180
[6]  Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13, 1768–1774
[7]  Eshed Y, Baum SF, Perea JV, and Bowman JL (2001). Establishment of polarity in lateral organs of Arabidopsis. Current Biol 11, 1251-1260
[8]  Fiers M, Ku KL and Liu CM (2007). CLE peptide ligands and their roles in establishing meristems. Curr Opin Plant Biol 10, 39-43
[9]  Hu Y, Xie Q and Chua NH (2003). The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15, 1951-1961
[10]  Hu Z, Qin Z, Wang M, Xu C, Feng G, Liu J, Meng Z and Hu Y (2010). The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. Plant J 61, 600-610
[11]  Liu CM and Hu Y (2010). Plant stem cells amd their regulations in shoot apical meristems. Front in Biol. in press
[12]  Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010). Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science. 329, 1065-1067
[13]  Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y (2002). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43, 467–478
[14]  Jing Y, Cui D, Bao F, Hu Z, Qin Z, Hu Y (2009). Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. Plant J 57,511-521
[15]  Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88
[16]  Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001). KANADI regulates organ polarity in Arabidopsis. Nature 411, 706–709
[17]  Kidner CA, Martienssen RA (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84
[18]  McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713
[19]  Mallory AC, Elmayan T, Vaucheret H (2008). MicroRNA maturation and action - the expanding roles of ARGONAUTEs. Curr Opin Plant Biol 11, 560-566
[20]  Ori N, Eshed Y, Chuck G, Bowman JL, Hake S (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523–5532
[21]  Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001). REVOLUTA regulates meristem initiation at lateral positions. Plant J 25, 223–236
[22]  Qian G, Hu S, Guo G (2009). Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. Plant Cell Report 28, 1147-1157
[23]  Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K (1999). FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13, 1079–1088
[24]  Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128, 1771–1783
[25]  Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117–4128
[26]  Tsukaya H (2002). Leaf development. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis Book. American Society of Plant Biologists, Rockville.
[27]  Tsukaya H (2003). Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6, 57–62
[28]  Waites R, Selvadurai HR, Oliver IR, Hudson A (1998). The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93, 779–789
[29]  Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99 - 110
[30]  Yang L, Huang W, Wang H, Cai H, Xu Y, Huang H (2006). Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. Plant Molecular Biology 61, 63–78

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133