全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2011 

干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响

DOI: 10.3724/SP.J.1259.2011.00028, PP. 28-36

Keywords: 大麦,干旱胁迫,耐旱性,超微结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

?选用耐旱性不同的3个大麦(Hordeumsativum)品种作为研究对象,分析干旱胁迫对其叶肉细胞叶绿体、线粒体和细胞核超微结构的影响。结果表明,3个大麦品种在非胁迫条件下其超微结构无明显差异。遭受干旱胁迫后,不耐旱大麦品种Moroc9-75叶片细胞核中染色质的凝聚程度高,叶绿体变形,外被膜出现较大程度的波浪状和膨胀,同时基粒出现弯曲、膨胀、排列混乱的现象;线粒体外形及膜受到破坏、内部嵴部分消失等。耐旱大麦品种HS41-1叶片细胞中染色质虽出现凝聚,但凝聚程度低;其叶绿体及线粒体与非胁迫条件下基本相似,多数未见明显损伤。耐旱中等的大麦品种Martin叶片超微结构的变化则介于二者之间。因此,干旱胁迫下叶绿体外形、基粒和基质类囊体膜结构的完整性与基粒的排列次序、染色质的凝聚度和线粒体膜及嵴的完整性与大麦的耐旱性相关,这些特性可作为评价大麦耐旱性强弱的形态结构指标。

References

[1]  胡化广, 刘建秀,何秋, 郑玉红 (2005). 草坪草种质资源抗旱性及其改良研究进展. 植物学通报, 22(6): 648-657
[2]  简令成,王红.逆境植物细胞生物学.北京:科学出版社,2009,115-226
[3]  李扬汉. 禾本科作物的形态与解剖.上海:上海科技出版社,1979, 393-416
[4]  万里强, 石永红, 李向林, 何峰, 贾亚雄 (2009). 高温干旱胁迫下三个多年生黑麦草品种叶绿体和线粒体超微结构的变化. 草业学报 18(1): 25-31
[5]  吴凯,周晓阳 (2007). 环境胁迫对植物超微结构的影响.山东林业科技, 3: 80-83
[6]  杨帆,苗灵凤,胥晓,李春阳 (2007). 植物对干旱胁迫的响应研究进展.应用与环境生物学报, 13(4): 586-591
[7]  Ceccarelli S (1994). Specific adaptation and breeding for marginal conditions. Euphytica, 77:205-219
[8]  Ceccarelli S, Grando S, Baum M, Udupa SM (2004). Breeding for drought resistance in a changing climate. In: Challenges and strategies of dryland agriculture--Rao S, Ryan J, eds. CSSA Special Publication no. 32. Madison, WI: Crop Science Society of America and American Society of Agronomy, 2004, 167-190.
[9]  Cellier F, Conejero G, Breitler JC, Casse F (1998). Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflowers. Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol, 116:319-328
[10]  Cochard H, Coll L, Roux XL, and Améglio T (2002). Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut. Plant Physiol, 128: 282-290
[11]  Demirevska K, Simova-Stoilova L, Vassileva V, Feller U (2008). Rubisco and some chaperone protein responses to water stress and real watering at early seedling growth of drought sensitive and tolerant wheat varieties. Plant Growth Regul, 56:97-106
[12]  Doorenbos J, Pruit WO (1977). Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper no. 24, 1977. Rome: FAO.
[13]  Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot, 60(12): 3531 - 3544.
[14]  Guo P, Baum M, Grando S, Ceccarelli S, Li R, Valkoun J (2008). QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 163: 203-214
[15]  Gupta S, Berkowitz GA (1988). Chloroplast osmotic adjustment and water stress effects on photosynthesis. Plant Physiol, 88:200–206
[16]  Ryan J, Estefan G, Rashid A (2001), Soil and plant analysis laboratory manual. Second edition. Jointly published by the Internation Center for Agricultural Research in the Dry Areas (ICARDA) and the National Agricultural Research Center (NARC). Aleppo, Syria.
[17]  Sacks MM, Silk WK, Burman P (1997). Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol, 114:519-527
[18]  Stoyanova D, Tchakalova E, Yordanov I (2002). Influence of different soil moisture on anatomy of maize leaves and ultrastructure of chloroplasts. Bulg J Plant Physiol, 28(12): 11-20
[19]  Vassileva V, Simova-Stoilova L, Demirevska K and Feller U (2009). Variety-specific response of wheat (Triticum aestivum L.) leaf mitochondria to drought stress. Journal of Plant Research, 122(4): 445-454
[20]  白志英, 李存东, 屈平 (2009). 干旱胁迫对小麦中国春--Synthetic 6X代换系叶片超微结构的影响. 电子显微学报, 28(1): 68-72
[21]  陈珂,焦娟玉,尹春英(2009). 植物对水分胁迫的形态及生理响应.湖北农业科学, 48(4): 992-995
[22]  韩善华 (1991). 油菜叶绿体在干旱处理过程中的超微结构变化. 作物学报, 17(4): 311-313
[23]  Kolodziejek, I, Koziol J, Waleza M, Mostowska A (2003). Ultrastructure of mesophyll cells and pigment content in senescing leaves of maize and barley. Plant Growth Regul, 22: 217-227
[24]  Li R, Guo P, Baum M, Grando S and Ceccarelli S (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 5: 751-757
[25]  Olmos E, Sánchez-Blanco MJ, Ferrández T, Alarcón JJ (2007). Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol, 9: 77–84
[26]  Radyuk MS and Homan NM (2002). Discrete character of the development of the photosynthetic apparatus in greening barley leaves. Photosynthesis Research, 72: 117-122
[27]  Reddy AR , Chaitanya KV , Vivekanandan M (2004). Drought induced response of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161: 1189-1202
[28]  Ristic Z and Cass DD (1991). Chloroplast structure after water shortage and high temperature in two lines of Zea Mays L. that differ in drought resistance. Bot Gaz, 152(2): 186-194.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133