全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2012 

植物实时荧光定量PCR内参基因的特点及选择

DOI: 10.3724/SP.J.1259.2012.00427, PP. 427-436

Keywords: 基因表达分析,基因表达的稳定性,qRT-PCR,内参基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

?实时荧光定量PCR(qRT-PCR)具有灵敏度高、特异性强、重复的动态定量范围和高通量等优点,是进行植物基因表达和转录分析最常用的技术手段之一。选择合适的内参基因是正确运用实时荧光定量PCR分析目标基因表达变化的前提。近年来,大量研究表明,内参基因的选择应取决于研究者的实验条件;随着实验条件的变化,内参基因的选择也随之变化。因此,实时荧光定量PCR结果分析的准确性在很大程度上依赖于所选择的内参基因是否适合。该文从内参基因的选择、常用内参基因的特点、新内参基因的挖掘、应用内参基因组合的优点和内参基因的稳定性评价等几方面进行综述,以期为研究者在实验中选择合适的内参基因提供参考和理论依据。

References

[1]  陈凤花, 王琳, 胡丽华 (2005). 实时荧光定量RT-PCR内参基因的选择. 临床检验杂志 23, 393-395.
[2]  胡瑞波, 范成明, 傅永福 (2009). 植物实时荧光定量PCR内参基因的选择. 中国农业科技导报, 11, 30-36.
[3]  Andersen CL, Jensen JL, Orntoft TF (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245-5250.
[4]  Brunner AM, Yakovlev IA, Strauss SH (2004). Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4, 14.
[5]  Coker JS, Davis E (2003). Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 35, 75-748.
[6]  Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros L, Romano E, Grossi-de-Sá MF, Vaslin M, Alves-Ferreira M (2009). Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breeding 23, 607-616.
[7]  Czechowski T, Stitt M, Altman T, Udvardi MK, Scheible WR (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139, 5-17.
[8]  Die JV, Román B, Nadal S, González-Verdejo CI (2010). Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232, 145-153.
[9]  Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GAW, Zumla A (2005). The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344, 141-143.
[10]  Faccioli P, Ciceri G P, Provero P, Stancad A M, Morcia C, Terzi V (2007). A combined strategy of “in silico” transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol 63, 679-688.
[11]  Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6, 609-618.
[12]  Wong ML, Medrano JF (2005). Real-time PCR for mRNA quantitation. Biotechniques 39, 75-85.
[13]  Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009). Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions specific, validation of references. J Exp Bot 60, 487-493.
[14]  Hong SY, Seo PJ, Yang MS, Xiang F, Park CM (2008). Exploring valid reference genes for gene expression studies in Brachypodium distacyon by real-time PCR. BMC Plant Biol 8,112.
[15]  Huggett J, Dheda K, Bustin S, Zumla A (2005). Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6, 279-284.
[16]  Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF (2009). Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10, 93.
[17]  Iskandar HM, Simpson RS, Casu RE, Bonnet GD, Maclean DJ, Manners JM (2004). Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene in sugarcane. Plant Mol Biol Rep 22, 325-337.
[18]  Jain M (2009). Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice. Plant Sci 176, 702-706.
[19]  Jian B, Liu B, Bi YR, Hou WS, Wu CX, Han TF (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9: 59.
[20]  Long XY, Wang JR, Ouellet T, Rocheleau H, Wei YM, Pu ZE, Jiang QT, Lan XJ, Zheng, YL (2010). Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74, 307-311.
[21]  Nicot N, Hausman JF, Hoffmann L, Evers D (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Boty 56, 2907-2914.
[22]  Nolan T, Hands RE, Bustin SA (2006). Quantification of mRNA using real-time RT-PCR. Nat Protoc 1, 1559-1582.
[23]  Paolacci AR, Tanzarella OA, Porceddu EP, Ciaffi M (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biolol 10, 11.
[24]  Pfaffl, MW (2006). Real-Time PCR. New York: International University Line. pp. 63-82.
[25]  Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26, 509-515.
[26]  Quackenbush J (2002). Microarray data normalization and transformation. Nat Genet 32, 496-501.
[27]  Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006). An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6, 27.
[28]  Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008). Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227, 1343-1349.
[29]  Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 112-119.
[30]  Schmid H, Cohen CD, Henger A, Irrgang S, Schl?ndorff D, Kretzler M (2003). Validation of endogenous controls for gene expression analysis in micro dissected human renal biopsies. Kidney Int 64, 356-360.
[31]  Silver N, Best S, Jiang J, Thein SL (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7, 33.
[32]  Tiziana M, Elisa S, Donato G, Fabrizio C (2010). Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Molecular Plant Pathol 11, 805-816.
[33]  Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009). Selection of reliable reference genes for gene expression studies in peach using real time PCR. BMC Mol Biol 10, 71.
[34]  Tu LL, Zhang XL, Liu DQ, Jin SX, Cao JL, Zhu LF, Deng FL, Tan JF, Zhang CB (2007). Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chinese Sci Bull 52, 3110-3117.
[35]  Udvardi MK, Czechowski T, Scheible WR (2008). Eleven golden rules of quantitative RT-PCR. Plant Cell 20, 1736-1737.
[36]  Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, 0034.1-0034.11.
[37]  Volkov RA, Panchuk II. Schoffl F (2003). Heat-stress dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54, 2343-2349.
[38]  Zhu J, He F, Song S, Wang J, Yu J (2008). How many human genes can be defined as housekeeping with current expression data? BMC Genomics 9, 172.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133