全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2012 

生长素合成途径的研究进展

DOI: 10.3724/SP.J.1259.2012.00292, PP. 292-301

Keywords: 合成途径,,基因,生长素

Full-Text   Cite this paper   Add to My Lib

Abstract:

?生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,参与植物生长发育的许多过程。植物和一些侵染植物的病原微生物都可以通过改变生长素的合成来调节植株的生长。吲哚-3-乙酸(IAA)是天然植物生长素的主要活性成分。近年来,随着IAA生物合成过程中一些关键调控基因的克隆和功能分析,人们对IAA的生物合成途径有了更加深入的认识。IAA的生物合成有依赖色氨酸和非依赖色氨酸两条途径。依据IAA合成的中间产物不同,依赖色氨酸的生物合成过程通常又划分成4条支路:吲哚乙醛肟途径、吲哚丙酮酸途径、色胺途径和吲哚乙酰胺途径。该文综述了近几年在IAA生物合成方面取得的新进展。

References

[1]  Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008). Rapid synthesis of auxin via a new tryptophandependent pathway is required for shade avoidance in plants. Cell 133, 164–176.
[2]  Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011). Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108, 18518–18523.
[3]  Woodward AW and Bartel B (2005). Auxin: regulation, action, and interaction. Ann Bot(Lond) 95, 707–735.
[4]  Yamada M, Greenham K, Prigge MJ, Jensen PJ, and Estelle M (2009). The TRANSPORT INHIBITOR RESPONSE2 (TIR2) gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiology 151, 168–179.
[5]  Zazimalova E and Napier RM (2003). Points of regulation for auxin action. Plant Cell Reports 21, 625–634.
[6]  Zhao Y (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology 61, 49–64.
[7]  Bak S and Feyereisen R (2001). The involvement of two P450 Enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiology 127, 108~–118.
[8]  Bandurski RS, Cohen JD, Reineeke DM, Slovin, JP (1995). Auxin biosynthesis and metabolism. In: Plant Hormones, Physiology, Biochemistry and Molecular Biology, Ed. PJ Davies. Dordrecht, The Netherlands: Kluwer Academic Publishers. pp. 39–-65.
[9]  Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000). The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97, 14819– 14824.
[10]  Bartling D, Seedorf M, Schmidt RC, Weiler EW (1994). Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in the biosynthesis of the plant hormone indole-3-acetic acid. Proc Natl Acad Sci USA 91, 6021–6025.
[11]  Bittner F, Oreb M, Mendel RR (2001). ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. Journal of Biological Chemistry 276, 40381–40384.
[12]  Cheng Y, Dai X, Zhao Y (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes and Development 20, 1790–1799.
[13]  Cheng Y, Dai X, Zhao Y (2007). Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430–2439.
[14]  Cohen JD, Slovin JP, Hendrickson AM (2003). Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends in Plant Science 8, 197–-199.
[15]  Davies PJ (1995). Plant Hormones: Physiology, Biochemistry and Moleeular Biology, Znded. Kluwer Aeademie Publishers, Dordrecht.
[16]  Gray WM, ?stin A, Sandberg G., Romano CP, Estelle M (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95, 7197–7202.
[17]  Grubb CD and Abel S (2006). Glucosinolate metabolism and its control. Trends in Plant Science 11, 89–100.
[18]  Hull AK, Vij R, Celenza JL (2000). Arabidopsis cytochrome P450s that catalyze the first step of tryptophan- dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97, 2379–2384.
[19]  Kawaguchi M, Fujioka S, Sakurai A, Yamaki YT, Syono K (1993). Presence of a pathway for the biosynthesis of auxin via indole-3-acetamide in Trifoliata orange. Plant Cell Physiol 34, 121–128.
[20]  Kobayashi M, Suzuki T, Fujita T, Masuda M, and Shimizu S (1995). Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92, 714-718.
[21]  Koga J (1995). Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Biochimica et Biophysica Acta 1249, 1–13.
[22]  Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010). Indole-3-acetamide-dependent auxin biosynthesis: A widely distributed way of indole-3-acetic acid production? European Journal of Cell Biology 89, 895-905.
[23]  Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011). The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108, 18512-18517.
[24]  Mikkelsen MD, Naur P, Halkier BA (2004). Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant Journal 37, 770–777.
[25]  Nemoto K, Hara M, Goto S, Kasai K, Seki H, Suzuki M, Oka A, Muranaka T, Mano Y (2009a). The aux1 gene of the Ri plasmid is suf?cient to confer auxin autotrophy in tobacco BY-2 cells. Journal of Plant Physiology 166, 729–738.
[26]  Nemoto K, Hara M, Suzuki M, Seki H, Muranaka T, Mano Y (2009b). The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide. FEBS Letters 583, 487–492.
[27]  Park WJ, Kriechbaumer V, M?ller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2003). The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiology 133, 794–802.
[28]  Pollmann S, Düchting P, Weiler EW (2009). Tryptophan-dependent indole-3-acetic acid biosynthesis by ‘IAA-synthase’ proceeds via indole-3-acetamide. Phytochemistry 70, 523–531.
[29]  Pollmann S, Neu D, Lehmann T, Berkowitz O, Schafer T, and Weiler EW (2006). Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta 224, 1241–1253.
[30]  Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009). Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiology 151, 1130–1138.
[31]  Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998). Higher activity of an aldehyde oxidase inthe auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiology 116, 687–693.
[32]  Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000). Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant Journal 23, 481–488.
[33]  Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dole?al K, Schlereth A, Jürgens G, Alonso JM (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177––191.
[34]  Strader LC and Bartel B (2008). A new path to auxin. Nature Chemical Biology 4, 337–339.
[35]  Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009). Biochemical analyses of indole-3- acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106, 5430–5435.
[36]  Zhao Y (2011). Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Molecular Plant 12, 1–5.
[37]  Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001). A role for ?avin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309.
[38]  Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development 16, 3100–3112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133