全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2012 

玉米性别决定的激素调控

DOI: 10.3724/SP.J.1259.2012.00065, PP. 65-73

Keywords: 玉米,植物激素,选择性败育,性别决定

Full-Text   Cite this paper   Add to My Lib

Abstract:

?玉米(Zeamays)属典型的雌雄异花植物,单性花的形成经历了复杂的性别决定过程。通过雄穗小花和雌穗下位花的雌蕊原基以及雌穗小花雄蕊原基的选择性败育(或退化),玉米最终形成正常的雌雄同株单性花。相关突变体的研究揭示,玉米性别决定涉及选择性细胞死亡、细胞保护及信号转导等复杂的过程。其中,植物激素信号的调控在玉米性别决定过程中处于核心地位。最近的研究表明,赤霉素、细胞分裂素和茉莉酸类物质参与调控玉米性别决定过程。该文结合最新研究成果,综述了植物激素在玉米性别决定中的作用及其调控途径,同时提出了研究中存在的问题,并对该领域未来的研究方向进行了展望。

References

[1]  Pineda Rodó A, Brugière N, Vankova R, Malbeck J, Olson JM, Haines SC (2008). Over-expression of a zeatin Oglucosylation gene in maize leads to growth retardation and tasselseed formation. J Exp Bot 59, 2673-2686
[2]  Young TE, Giesler-Lee J, Gallie DR (2004). Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J 38, 910-922.
[3]  孙清鹏,王小菁 (2003).植物伤反应中的茉莉酸类信号.植物学通报 20,481-488.
[4]  孙兵,闫彩霞,张廷婷,郑奕雄,毕玉平,陈高,单世华 (2009). 基因芯片技术在植物基因克隆中的应用研究进展. 组学与应用生物学 28, 153-158.
[5]  吴劲松,种康 (2002).茉莉酸作用的分子生物学研究.植物学通报 19,164-170.
[6]  左照江,张汝民,高岩 (2009).植物间挥发物信号的研究进展.植物学报 44,245-252.
[7]  Acosta IF,Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP,Moreno MA,Dellaporta SL (2009). tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize tasselseed1,Science 323, 262-265.
[8]  Armstrong DJ (1994). Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok DWS, Mok MC, eds. Cytokinins: chemistry, activity, and function. Boca Raton: CRC Press, 139-154.
[9]  Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995). Cloning and characterisation of the maize An1 gene. Plant Cell 7, 75-84.
[10]  Browse J (2009). Jasmonate: Preventing the maize tassel from getting in touch with his feminine side. Sci Signal 2, 9.
[11]  Calderon-Urrea A, Dellaporta SL (1999). Cell death and cell protection genes determine the fate of pistils in maize. Development 126, 435-441.
[12]  Cheng PC, Greyson RI, Walden DB (1983). Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. Am J Bot 70, 450-462.
[13]  Chuck G (2010). Molecular mechanisms of sex determination in monoecious and dioecious plants. Advances in botanical research 54, 53-83.
[14]  Chuck G, Meeley RB, Irish E, Sakai H, Hake S (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39, 1517-1521.
[15]  De Long A, Calderon-Urrea A, Dellaporta SL (1993). Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage–specific floral organ abortion. Cell 74, 757–768.
[16]  De Veylder L, Joubès J, Inzé D (2003). Plant cell cycle transitions. Curr Opin Plant Biol 6, 536-543.
[17]  Dellaporta SL, Calderon-Urrea A (1993). Sex determination in flowering plants. Plant Cell 5, 1241-1251.
[18]  Dellaporta SL, Calderon-Urrea A (1994). The sex determination process in maize. Science 266, 1501-1505.
[19]  Emerson, RA (1932). The present status of maize genetics. 6th Int Congr Genet Proc 1,141-152.
[20]  Emerson, RA (1920). Heritable characters of maize. II. Pistillate flowered maize plants. J Hered 11, 65-76.
[21]  Fujioka S, Yamane H, Spray CR, Gaskin P, Mac Millan J, Phinney BO,Takahashi N (1988). Qualitative and quantitative analysis of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol 88, 1367-1372.
[22]  Fung TK, Poon RY (2005). A roller coaster ride with the mitotic cyclins. Semin. Cell Dev Biol 16, 335-342.
[23]  Gan S, Amasino RM (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986-1988.
[24]  Heslop-Harrison J (1961). The experimental control of sexuality and inflorescence structure in Zea mays L. Proc Linn Soc Lond 172, 108-123.
[25]  Harberd NP, Freeling M(1989). Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121, 827-838.
[26]  Hultquist J, Dorweiler J (2008). Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes. Planta 229, 99-113.
[27]  Irish EE (1996). Regulation of sex determination in maize. Bioessays 18, 363-369.
[28]  Irish EE, Langdale JA, Nelson TM (1994). Interactions between Tassel Seed genes and other sex determining genes in maize. Dev Genet 15, 155-171.
[29]  Irish EE (1997). Class II tassel seed mutations provide evidence for multiple types of inflorescence meristems in maize (Poaceae). Am J Bot 84, 1502-1515.
[30]  Jones DF (1925). Heritable characters in maize. XXIII. Silkless. J Hered 16, 339-341.
[31]  Jones DF (1934). Unisexual maize plants and their bearing on sex differentiation in other plants and animals. Genetics 19, 552-567.
[32]  Kim JC, Laparra H, Calderon-Urrea A, Mottinger JP, Moreno MA, Della-porta SL (2007). Cell cycle arrest of stamen initials in maize sex determination. Genetics 177, 2547-2551.
[33]  Mueller PR, Coleman TR, Kumagai A, Dunphy WG (1995b) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270: 86-90.
[34]  Mueller PR, Colemanand TR, Dunphy WG (1995a). Cell cycleregulation of a Xenopus Wee1-like kinase. Mol Biol Cell 6, 119-134.
[35]  Murakami MS, Vande Woude GF (1998). Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos. Development 125, 237-248.
[36]  Neuffer MG, Coe EH, Wessler SR (1997). Mutants of Maize. Cold Spring Harbor Laboratory Press, Plainview, New York.
[37]  Nickerson NH (1959). Sustained treatment with gibberellin acid of five different kinds of maize. Ann Mo Bot Gard 47, 19-37.
[38]  Nlckerson NH, Dele EE (1955). Tassel modifications in Zea mays. Ann Mo Bot Gard 42, 195-212.
[39]  Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE,Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd N P (1999). ‘Green revolution’ genes encode mutant gibberellins response modulators. Nature 400, 256-261.
[40]  Phinney BO, Spray C (1982). Chemical Genetics and the Gibberellin Pathway in Zea Mays L. Plant Growth Substances. Academic Press, New York, pp. 101-110.
[41]  Phipps IF (1928). Heritable characters in maize. XXXI. Tasselseed4. J Hered 19, 399-404.
[42]  Richards DE, King KE, Aitali T, Harberd NP (2001). How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52, 67-88.
[43]  Spray CR, Phynney BO, Gaskin P, Gilmour SJ, Mac Millan J (1984). Internode length in Zea mays L. The dwarf-1 mutation controls the 3?‐hydroxylation of gibberellins A20 to gibberellin A20. Planta 160, 464-468.
[44]  Veit B, Schmidt RJ, Hake S, Yanofsky MY (1993). Maize floral development: New genes and old mutants. Plant Cell 5, 1205-1215.
[45]  Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006). The wound response in tomato-role of jasmonic acid. J Plant Physiol 163.297-306.
[46]  Wasternack C (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100, 681-697.
[47]  Wu HM, Cheung AY (2000). Programmed cell death in plant reproduction. Plant Mol Biol 44, 267-281.
[48]  Yamasaki S, Fujii N, Takahashi H (2005). Hormonal regulation of sex expression in plants. Vitam Horm 72, 79-110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133