McSharry P E, Bouwman S, Bloemhof G. Probabilistic forecast of the magnitude and timing of peak electricity demand[J]. IEEE Transactions on Power Systems, 2005,20(2):1166-1172.
Hippert H S,Pedreira C E,Souza R C.Neural networks for short-term load forecasting: a review and evaluation[J]. IEEE Transactions on Power Systems,2001,16(1):44-55.
Ruppert D, Wand M P, Carroll R J.Semiparametric regression[M].Cambridge:Cambridge University Press,2003.
[10]
Hamilton J D. Time series analysis[M].Princeton:Priceton University Press,1994.
[11]
Engle R F, Granger C W J, Rice J. Semi-parametric estimates of the relation between weather and electricity sales[J].Journal of the American Statistical Association,1986,81(394):310-320.
[12]
Charytoniuk W, Chen M S, Van Olinda P. Nonparametric regression based short-term load forecasting[J]. IEEE Transac-tions on Power Systems,1998,13(3):725-730.
[13]
Baccini M, Biggeri A, Lagazio C. Parametric and semi-parametric approaches in the analysis of short-term effects of air pollution on health[J].Computational Statistics & Data Analysis,2007,51(9):4324-4336.
[14]
Fan Shu, Hyndman R J.Short-term load forecasting based on a semi-parametric additive model[J]. IEEE Transac-tions on Power Systems,2012,27(1):134-141.
[15]
Stone C J.Consistent nonparametric regression[J].Applied Statistical Society 1977,5(4):595-635.
[16]
Heckman N E. Spline smoothing in partial linear models[J].Journal of the Royal Statistical Society, Series B,1986,48(2):244-258.
[17]
Green P J.On Use of the EM for penalized likelihood estimation[J].Journal of the Royal Statistical Society, Series B(Methodological),1990,52(3):443-452.
[18]
Huang N E,Shen Zheng,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society A, 1998,454(1971):903-995.
[19]
Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.