全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于可变区间权重的中期用电量半参数预测模型

, PP. 123-129

Keywords: 半参数模型,可变区间权重,动态预测,集合经验模态分解,中期负荷预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

?由于数据变化规律的多样性,中期电力负荷的波动有着不同于短期、长期负荷的特点。基于电力系统复杂性的研究视角,重点讨论了中期负荷预测过程中模型的不确定性、参数的时变特性以及负荷波动的周期性规律。根据中期负荷的数据特性,建立了基于非参数修匀的半参数模型,定义了函数区间的划分粒度以及模型权重的求解方法,提出了基于可变区间权重的动态预测方法,给出了基于经验模态分解和波动能量分析的噪声序列提取、检验方法。试验研究结果表明,气候因素对用电消耗的影响最大,经济因素次之;从选取的指标来看,不同时期的影响因素对于模型的解释能力是时变的;所提方法能够对电力负荷进行精确的多粒度、多维度分析,进而掌握其局部变化规律,可有效用于电力系统中期负荷预测。

References

[1]  康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11.
[2]  McSharry P E, Bouwman S, Bloemhof G. Probabilistic forecast of the magnitude and timing of peak electricity demand[J]. IEEE Transactions on Power Systems, 2005,20(2):1166-1172.
[3]  王晓佳,杨善林.基于组合差值的GM(1,1)模型预测方法的改进与应用[J].中国管理科学,2012,20(2):129-134.
[4]  史会峰,牛东晓,卢艳霞.基于贝叶斯神经网络短期负荷预测模型[J].中国管理科学,2012,20(4):118-124.
[5]  Hippert H S,Pedreira C E,Souza R C.Neural networks for short-term load forecasting: a review and evaluation[J]. IEEE Transactions on Power Systems,2001,16(1):44-55.
[6]  张宜阳,卢继平,孟洋洋,等.基于经验模式分解和混沌相空间重构的风电功率短期预测[J].电力系统自动化,2012,36(5):24-28.
[7]  李瑾,刘金朋,王建军.采用支持向量机和模拟退火算法的中长期负荷预测方法[J].中国电机工程学报,2011,31(16):63-66.
[8]  邰能灵,侯志俭,李涛,等.基于小波分析的电力系统短期负荷预测方法[J].中国电机工程学报,2003,23(1):45-50.
[9]  Ruppert D, Wand M P, Carroll R J.Semiparametric regression[M].Cambridge:Cambridge University Press,2003.
[10]  Hamilton J D. Time series analysis[M].Princeton:Priceton University Press,1994.
[11]  Engle R F, Granger C W J, Rice J. Semi-parametric estimates of the relation between weather and electricity sales[J].Journal of the American Statistical Association,1986,81(394):310-320.
[12]  Charytoniuk W, Chen M S, Van Olinda P. Nonparametric regression based short-term load forecasting[J]. IEEE Transac-tions on Power Systems,1998,13(3):725-730.
[13]  Baccini M, Biggeri A, Lagazio C. Parametric and semi-parametric approaches in the analysis of short-term effects of air pollution on health[J].Computational Statistics & Data Analysis,2007,51(9):4324-4336.
[14]  Fan Shu, Hyndman R J.Short-term load forecasting based on a semi-parametric additive model[J]. IEEE Transac-tions on Power Systems,2012,27(1):134-141.
[15]  Stone C J.Consistent nonparametric regression[J].Applied Statistical Society 1977,5(4):595-635.
[16]  Heckman N E. Spline smoothing in partial linear models[J].Journal of the Royal Statistical Society, Series B,1986,48(2):244-258.
[17]  Green P J.On Use of the EM for penalized likelihood estimation[J].Journal of the Royal Statistical Society, Series B(Methodological),1990,52(3):443-452.
[18]  Huang N E,Shen Zheng,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society A, 1998,454(1971):903-995.
[19]  Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133