全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于相似日聚类和贝叶斯神经网络的光伏发电功率预测研究

, PP. 118-122

Keywords: 光伏阵列,功率预测,相似日,模糊C均值聚类,贝叶斯神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

?光伏发电功率的预测是光伏发电规划和运行的基础,因而受到越来越多的重视。文中提出了FCM相似日聚类与智能算法相结合的光伏阵列功率短期预测模型。该方法的思路是首先通过分析影响光伏阵列输出功率的主要因素,对历史数据与预测日气象环境进行模糊分类,并筛选出相似度高的子集作为样本,以提高预测样本的质量;然后通过神经网络映射出特征空间与光伏功率之间的复杂关系,并用贝叶斯理论对神经网络参数进行优化,提高网络的泛化能力。为检验该方法的有效性和精确性,将所提出方法与常用BP神经网络模型对同一仿真算例进行预测,预测结果表明本文提出的预测模型效果更佳。

References

[1]  王守相,张娜.基于灰色神经网络组合模型的光伏短期出力预测[J].电力系统自动化,2012,36(19):37-41.
[2]  Bosch J L, Zheng Yuehai, Kleissl J. Deriving cloud velocity from an array of solar radiation measurements[J]. Solar Energy, 2013, 87: 196-203.
[3]  东海光.光伏并网发电系统的发电预测研究.天津:天津大学,2011.
[4]  Bracale A, Caramia P, Carpinelli G, et al. A Bayesian method for short-term probabilistic forecasting of photovoltaic generation in smart grid operation and control [J]. Energies,2013,6(2):733-747.
[5]  Conti S, Raiti S. Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators [J]. Solar Energy, 2007, 81(12): 1473-1481.
[6]  Diaz F, Montero G, Escobar J M, et al. An adaptive solar radiation numerical model[J]. Journal of computational and applied mathematics, 2012, 236(18):4611-4622.
[7]  朱永强,田军.最小二乘向量机在光伏功率预测中的应用[J].电网技术,2011,35(7):54-59.
[8]  丁明,徐宁舟.基于马尔科夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(1):152-157.
[9]  Chow S K H, Lee E W M, Li D H W. Short-term prediction of photovoltaic energy generation by intelligent approach [J]. Energy and buildings, 2012, 55:660-667.
[10]  Chen Changsong, Duan Shanxu, Cai Tao, et al. Online 24-h solar power forecasting based on weather type classification using artificial neural network [J]. Solar energy, 2011, 85(11): 2856-2870.
[11]  陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158.
[12]  Diagne M, David M, Lauret P, et al. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids [J]. Renewable and sustainable energy reviews, 2013, 27: 65-76.
[13]  Shi Jie, Lee W J, Liu Yongqian, et al. Forecasting power output of photovoltaic systems based on weather classification and support vector machines [J]. IEEE transactions on industry applications, 2012, 48(3): 1064-1069.
[14]  孟洋洋,卢继平,孙华利,等.基于相似日和人工神经网络的风电功率短期预测[J].电网技术,2010,34(12):163-167.
[15]  傅美平,马红伟,毛建容.基于相似日和最小二乘支持向量机的光伏发电短期预测[J].电力系统保护与控制,2012,40(16):65-69.
[16]  王晓兰,葛鹏江.基于相似日和径向基函数神经网络的光伏阵列输出功率预测[J].电力自动化设备,2013,33(1):100-109.
[17]  吴春旭,吴镝,蒋宁.一种基于信息熵与K均值迭代模型的模糊聚类算法[J].中国管理科学,2008,16(S1):152-156.
[18]  史会峰,牛东晓,卢艳霞.基于贝叶斯神经网络短期负荷预测模型[J].中国管理科学,2012,20(4):118-123.
[19]  嵇灵,牛东晓,吴焕苗.基于贝叶斯框架和回声状态网络的日最大负荷预测研究[J].电网技术,2012,36(11):82-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133