Kariv O, Hakimi S L. An algorithmic approach to network location problems (I): The p-centers [J]. SIAM Journal on Applied Mathematics, 1979, 37(3): 513-538.
[2]
Hsu W L, Nemhauser G L. Easy and hard bottleneck location problems [J]. Discrete Applied Mathematics, 1979, 1(3): 209-215.
[3]
Hochbaum D S, Shmoys D B. A best possible approximation algorithm for the k-center problem [J]. Mathematics of Operations Research, 1985, 10(2):180-184.
[4]
Chen R, Handler G Y. Relaxation method for the solution of the mini-max location-allocation problem in Euclidean space [J]. Naval Research Logistics, 1987, 34(6):775-788. 3.0.CO;2-N target="_blank">
[5]
Averbakh I, Berman O. Algorithms for the robust 1-center problem on a tree [J]. European Journal of Operational Research, 2000, 123(2):292-302.
[6]
Handler G Y, Mirchandani P B. Location on networks: Theory and algorithms [M]. Cambridge, MA: MIT Press, 1979.
[7]
Frank H. Optimum locations on a graph with probabilistic demands [J]. Operations Research,1966, 14(3):409-421.
[8]
Frank H. Optimum locations on a graph with correlated normal demands [J]. Operations Research,1967, 15(3):552-557.
[9]
Wesolowsky G O. Probabilistic weights in the one-dimensional facility location problem [J]. Management Science, 1977, 24(2):224-229.
[10]
Bhatia R, Guha S, Khuller S, et al. Facility location with dynamic distance functions [J]. Journal of Combinatorial Optimization, 1998, 2(3):199-217.
[11]
Charikar M, Khuller S, Mount D M, et al. Algorithms for facility location problems with outliers [C]. Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, January 7-9,2001.
[12]
Chaudhuri S., Garg N, Ravi R. The p-neighbor k-center problem [J]. Information Processing Letters, 1998, 65(3):131-134.
[13]
Hochbaum D S, Shmoys D B. A unified approach to approximate algorithms for bottleneck problems [J]. Journal of the ACM, 1986, 33(3):533-550.
[14]
Lim A, Rodrigues B, Wang Fan, et al. K-center problems with minimum coverage [J]. Theoretical Computer Science, 2005, 332(1-3):1-17.
[15]
Plesník J. A heuristic for the p-center problem in graphs [J]. Discrete Applied Mathematics, 1987, 17(3):263-268.
[16]
G?rtz I L, Wirth A. Asymmetry in k-center variants [J]. Theoretical Computer Science, 2006, 361(2-3):188-199.
[17]
Berman O, Drezner Z. A new formulation for the conditional p-median and p-center problems [J]. Operations Research Letters, 2008, 36(4):481-483.
[18]
Berman O, Simchi-Levi D. Conditional location problems on networks [J]. Transportation Science, 1990, 24(1):77-78.
[19]
Chen D, Chen R. New relaxation-based algorithms for the optimal solution of the continuous and discrete p-center problems [J]. Computers & Operations Research, 2009, 36(5):1646-1655.
[20]
Chen D, Chen R. A relaxation-based algorithm for solving the conditional p-center problem [J]. Operations Research Letters, 2010, 38(3):215-217.
[21]
G?rtz I L. Asymmetric k-center with minimum coverage [J]. Information Processing Letters, 2008, 105(4):144-149.