Fontnouvelle, P., Virginia, D.R., Jordan, J., Rosengren, E.. Capital and Risk: New Evidence on Implications of Large Operational Losses[J]. Journul of Money,Creditand Banking,2006,38(7):1819-1846.
Perry, J., Fontnouvelle, P.. Measuring Reputational Risk: The Market Reaction to Operational Loss Announcements[Z]. http://papers.ssrn.com/sol3,2005.
[5]
Cummins, D. J., Christopher, L. M., Wei, R.. The market value impact of operational loss events for US banks and insurers[J]. Banking & Finance, 2006,30: 2605-2634.
Pandey, H., Rao, A.K.. Bayesian estimation of the shape parameter of a Generalized Pareto Distribution under asymmetric functions [J]. Mathematics and Statistics,2009, 38(1): 69-83.
[12]
Zea Bermudez, P., Turkman,A.. Bayesian approach to parameter estimation of the generalized Pareto distribution[J]. Test, 2003,12(1):259-277.
[13]
Coles, S.G., Tawn J.A.. A Bayesian analysis of extreme rainfall data[J]. Applied Statistics, 1996,45:463-78.
[14]
Behrens, C.N., Lopes, H.F., Gamerman, D.. Bayesian analysis of extreme events with threshold estimation[J]. Statistical Modelling, 2006,(6): 251-263.
[15]
Vallea, L.D., Giudici, P.. A Bayesian approach to estimate the marginal loss distributions in operational risk management[J]. Computational Statistics & Data Analysis, 2008,52 (10):3107-3127.
[16]
Robert, C.P., Casella, G.. Monte Carlo Statistical Methods[M]. New York:Springer, 1999.
[17]
Gelman, A., Roberts, G., Gilks, W.. Efficient Metropolis Jumping Rules[M]. Oxford:Oxford University Press, 1995.
[18]
Stephenson, A., Tawn, J.. Bayesian inference for extremes: Accounting for the three extremal types[J]. Extremes, 2004,(7):291-307.