Weston J, Elisseeff A, Schцlkopf B, et al. Use of the zero norm with linear models and kernel methods[J]. Journal of Machine Learning Research, 2003, 3:1439-1461.
[2]
Tibshirani R.Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, 1996, 267-288.
[3]
Zhang Chunkai, Hu Hong. Feature selection in SVM based on the hybrid of enhanced genetic algorithm and mutual information[M]//Torra V, Narukawa Y, Valls A, et al.Modeling Decisions for Artificial Intelligence. Berlin:Springer, 2006.
[4]
Lian Heng. On feature selection with principal component analysis for one-class SVM[J]. Pattern Recognition Letters, 2012, 33(9): 1027-1031.
[5]
Li Boyang, Wang Qianwei, Hu Jinglu. Feature subset selection: a correlation-based SVM filter approach[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2011, 6(2): 173-179.
[6]
He Qiang, Xie Zongxia, Hu Qinghua, et al. Neighborhood based sample and feature selection for SVM classification learning[J]. Neurocomputing, 2011, 74(10): 1585-1594.
[7]
Chen Feilong, Li F C. Combination of feature selection approaches with SVM in credit scoring[J]. Expert Systems with Applications, 2010, 37(7): 4902-4909.
[8]
Weinberger K Q, Sha F, Saul L K. Learning a kernel matrix for nonlinear dimensionality reduction[C]. Proceedings of the twenty-first international conference on Machine learning', Banff, July 4-8, 2004.
[9]
Mason L, Bartlett P, Baxter J. Improved generalization through explicit optimization of margins[J]. Machine Learning, 2000, 38(3):243-255.
[10]
Kong E B, Dietterich T G. Error-correcting output coding corrects bias and variance[C]. Proceedings of the Twelfth International Conference on Machine Learning, California, July 9-12, 1995.
[11]
Breiman L.Bias, variance and arcing classifiers[R]. Working Paper, University of California, 1996.
[12]
William H. Wolberg and O L. Mangasarian: Multisurface method of pattern separation for medical diagnosis applied to breast cytology[J]. Proceedings of the National Academy of Sciences, 1990, 87(23): 9193-9196.
Wei Liwei, Chen Zhenyu, Li Jianping. Evolution strategies based adaptive L-p LS-SVM[J]. Information Sciences, 2011, 181(14): 3000-3016.
[17]
Lanckriet G, Cristianini N, Bartlett P, et al. Learning the kernel matrix with semidefinite programming[J]. Journal of Machine Learning Research, 2004, 5:27-72.
Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182.
[20]
Ichino M, Sklansky J. Optimum feature selection by zero-one integer programming[J]. IEEE Transaction on Systems, 1984, 14: 737-746.
[21]
Foroutan I, Sklansky J. Feature selection for automatic classification of non-Gaussian data[J].IEEE Transaction on Systems, 1987, 17(2):187-198.
[22]
Kohavi R, John G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1-2):273-324.
[23]
Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 290(5500):2319-2323.
[24]
Balasubramanian M, Schwartz E L. The isomap algorithm and topological stability[J]. Science, 295(5552):7.
[25]
Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 290(5500):2323-2326.
[26]
Rosipal R, Girolami M, Trejo L. Kernel PCA for feature extraction of event related potentials for human signal detection performance[M]//Malmgren B A H, Borga M, Niklasson L.Artificial Neural Networks in Medicine and Biology.Berlin:Springer, 2000.
[27]
Rosipal R, Trejo L. Kernel partial least squares regression in reproducing kernel hilbert space[J]. The Journal of Machine Learning Research, 2002, 2:97-123.
[28]
Saunders C, Gammerman A, Vovk V. Ridge regression learning algorithm in dual variables[C]. Proceedings of the 15th International Conference on Machine Learning, Sydney, July 8-12, 2002.
[29]
Chen Zhenyu, Li Jianping. A multiple kernel support vector machine scheme for simultaneous feature selection and rule-based classification[J]. Artificial Intelligence in Medicine, 2007, 41(2):161-175.
Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Published by the IEEE Computer Society, 2007, 29(1):40-51.
[32]
Graepel T.Kernel matrix completion by semidefinite programming[J].Lecture notes in computer science, Springer, 2002, 2415:694-699.
[33]
Weinberger W, Packer B, Saul L. Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization[C]. Proceedings of the tenth international workshop on artificial intelligence and statistics, Barbados, Jan 6-8, 2005.
[34]
Sha Fei, Saul L. Analysis and extension of spectral methods for nonlinear dimensionality reduction[C]. Proceedings of the 22nd international conference on Machine learning, Bonn, August 7-11, 2005.
[35]
Freund R, Mizuno S.Interior point methods: current status and future directions[R].Warking Paper, Operations Research Center, 1996.