全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有缺陷产品的双渠道闭环供应链网络均衡

, PP. 68-79

Keywords: 闭环供应链网络,双渠道,缺陷产品,再制造率,变分不等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文研究了供应商向制造商供应原材料,制造商制造的产品(其中部分含有缺陷),通过零售商渠道和电子商务渠道销售给消费者,以满足消费市场需求,同时考虑消费者消费后产生的废旧品经由回收中心处理再到制造商处进行再制造的闭环供应链网络均衡模型。运用变分不等式理论和互补理论,分别刻画了供应市场、制造市场、零售市场、消费市场以及回收中心的最优行为,进而建立了双渠道闭环供应链网络均衡模型。利用变分不等式的对数二次型预测与校正(LQP-PC)算法,设计了模型求解算法。结合算例分析了双渠道、再制造率和产品缺陷对网络均衡的影响。算例结果表明:当制造商采用电子商务销售渠道时,对传统渠道会造成一定影响;制造商的再制造率增加时,制造商的利润显著增加,供应链的整体利润也有所增加;制造商的产品缺陷率降低时,其自身利润有所增加,而供应链整体利润增加明显。本文的研究结论对未来双渠道闭环供应链网络均衡的研究具有一定的借鉴意义。

References

[1]  熊中楷,曹俊,刘克. 基于动态博弈的闭环供应链回收质量控制研究[J]. 中国管理科学, 2007,15(4):42-50. 浏览
[2]  刘海军,陈菊红. 基于不可修复缺陷情境下的供应链模糊回购契约[J]. 控制与决策, 2010,25(8):1155-1158.
[3]  周若虹,张雪峰. 基于无缺陷退货的闭环供应链网络均衡模型[J].曲阜师范大学学报,2011,37(2):40-45.
[4]  Chung C J, Wee H M. Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system[J]. International Journal of Production Economics, 2011, 129:195-203.
[5]  孙浩,达庆利.制造/再制造集成物流网络设施选址问题研究[J]. 计算机集成制造系统,2009,15(2):362-368.
[6]  李新军,达庆利.再制造条件下闭环供应链效益分析[J].机械工程学报,2008,44(5):170-174.
[7]  晏妮娜,黄小原,刘兵. 电子市场环境中供应链双源渠道主从对策模型[J]. 中国管理科学, 2007,15(3):98-102. 浏览
[8]  雷延军,李向阳.基于风险与双渠道的全球供应链"超网络"均衡优化模型研究[J]. 中国管理科学, 2006,14(Special Issue):523-528.
[9]  张铁柱,周倩.双渠道多期供应链网络均衡模型研究[J].计算机集成制造系统,2008,14(8):1512-1520.
[10]  Nagurney A, Zhao Lan. Vatiational inequalities and networks in the formulation and computation of market equilibrium and disequilibria: the case of direct demand functions [J].Transportation Science, 1993, 27(1):4-15.
[11]  Dong J, Zhang Ding, Nagurney A. A supply chain network equilibrium model with random demand [J]. European Journal of Operational Research, 2004, 156(1):194-212.
[12]  Nagurney A,Cruz J,Dong J,et al.Supply chain networes,electronic commerce,and supply side and demand side risk[J].European Journal of Operational Research,2005,164(2):120-142..
[13]  Zhao Lan, Nagurney A. A network equilibrium framework for Internet advertising: Models, qualitative analysis, and algorithms [J]. European Journal of Operational Research, 2008, 187:456-472.
[14]  Meng Qiang, Huang Yikai, Cheu R L. Competitive facility location on decentralized supply chains [J].European Journal of Operational Research, 2009, 196(2): 487-99.
[15]  Nagurney A, Zhao Lan. Disequilibrium and variational inequalities [J]. Journal of Computational and Applied Mathematics, 1990, 33(2):181-198.
[16]  Nagurney A, Dong J, Zhang Ding.A supply chain network equilibrium model [J]. Transportation Research: Part E, 2002, 38(5):281-303.
[17]  Hamdouch Y. Multi-period supply chain network equilibrium with capacity constraints and purchasing strategies [J]. Transportation Research Part C, 2011, 19: 803-820.
[18]  Yang Guangfen, Wang Zhiping, Li Xiaoqiang. The optimization of the closed-loop supply chain network [J].Transportation Research Part E, 2009, 45(1):16-28.
[19]  张铁柱,刘志勇,滕春贤,等.多商品流供应链网络均衡模型的研究[J].系统工程理论与实践, 2005, 25 (7): 61-66.
[20]  Teng Chunxian, Yao Fengmin, Hu Xianwu. Study on muti-commodity flow supply chain network equilibrium model with random demand[J]. Systems Engineering-Theory&Practice, 2007, 27(10):77-83.
[21]  Xu Bing, Zhu Daoli. Multi-commodity flow supply chain network equilibrium model with stochastic choice[J]. Systems Engineering-Theory&Practice, 2007, 27(3): 82-90, 104.
[22]  刘诚,李伟,翟攀.随机需求条件下闭环供应链网络均衡[J].系统工程,2008,26(8):11-16.
[23]  董琼,马军.供应链超网络均衡模型[J].上海理工大学学报,2011,33(3):238-247.
[24]  陈兆波,滕春贤,姚锋敏. 考虑服务水平的供应链网络动态模型研究[J].管理工程学报,2011,25(1):121-127.
[25]  Korpelevich G M. The extra gradient method for finding saddle points and otherproblems [J]. Matekon, 1977, 13:35-49.
[26]  He Bingsheng, Xu Ya, Yuan Xiaoming. A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities [J]. Computational Optimization and Applications, 2006, 35(1):19-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133