OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
基于排队博弈的群体稳定性分析
, PP. 157-164
Keywords: 群体性事件,控制条件,状态方程,排队博弈
Abstract:
?本文基于排队博弈理论得到了群体不稳定事件发生的机理和演化过程,并在分析群体中各类个体状态转化关系的基础上,建立了群体不稳定事件在自由扩散条件下和受控制条件下的状态方程。通过方程求解表明:控制实施之前不稳定单元数量会随时间成指数函数形式增长;合理调整控制响应时间、控制实施强度和控制实施时间耗费,能有效减缓或阻止群体不稳定事件的发生。
References
[1] | Kahneman D,Knetsch J K,Thaler R H.The endowment effect, loss aversion and status quo bias [J].Journal of Economic Perspectives,1991,5 (1): 193-206.
|
[2] | Neumann J V, Morgenstern O. Theory of game and economic behavior[M]. Princeton:Princeton University Press, 1994.
|
[3] | Nash J. Equilibrium point in N-person games[J]. Proceedings of the National Academy of Sciences, 1950(36): 48-49.
|
[4] | Nash J. Noncooperative games[J]. The Annals of mathematics, 1951(54): 286-295.
|
[5] | Aubin J P. Mathematical methods of games and economic theory [M]. Amsterdam:North-Holland, 1982.
|
[6] | Yu Jian. Essential equilibria of n-person noncooperative Games[J]. Journal of Mathematical Economics, 1999 (31): 361-372.
|
[7] | Kahneman D,Tversky A.Prospect theory: An analysis of decision under risk [J]. Econometrica,1979, 47(2):263-291.
|
[8] | 周致纳,史忠科,李迎峰.行人群体闯红灯行为决策模型 [J].系统工程理论与实践,2009,29(11):177-182.
|
[9] | 杨虎,张东戈,黄匆,等.自组织应对"突发事件"协同模型 [J].系统工程与电子技术.2012,34(10).2069-2074.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|