全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

矩阵型网络DEA模型及其实证检验

, PP. 103-109

Keywords: 矩阵型结构,网络DEA,子过程效率,单元总效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对传统DEA模型无法有效的评价矩阵型网络系统的效率,本文构建了矩阵型网络决策单元的生产可能集,建立了矩阵型网络DEA模型。在此基础上证明了决策单元在矩阵型网络DEA模型下为弱DEA有效的充分必要条件为其每个子系统均为弱DEA有效。最后,选用美国的十个电力公司作为决策单元对模型进行实证检验,得出结论:矩阵型网络DEA模型弥补了传统DEA模型无法反映内部有效性从而可能得到错误结果的缺陷,并能精确地计算出各个子过程的效率,辨识出具体需要改进的子过程。同时新模型为评价复杂系统的效率提供了新的思路。

References

[1]  毕功兵,梁樑,杨峰.一类简单网络生产系统的DEA效率评价模型[J].系统工程理论与实践,2010,30(3):497-500.
[2]  Chuu S J. Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information [J]. Computers & Industrial Engineering, 2009, 57(3): 1033-1042.
[3]  Yang Yinsheng,Ma Benjiang,Masayuki K.Efficiency measuring DEA model for production system with k independent subsystems[J].Journal of the Operations Research Society of Japan,2000,43(3):343-354.
[4]  魏权龄,庞立永.链式网络DEA模型[J].数学的实践与认识,2010,40(1):213-222.
[5]  González-Pachón J, Rodríguez-Galiano M I, Romero C. Transitive approximation to pairwise comparison matrices by using interval goal programming [J]. Journal of Operational Research Society, 2003, 54(5): 532-538.
[6]  尤天慧, 樊治平, 俞竹超. 一种具有序区间偏好信息的群决策方法[J]. 东北大学学报(自然科学版), 2007, 28(2): 286-288.
[7]  樊治平, 尤天慧. 求解序区间偏好信息群决策问题的理想点法[J]. 东北大学学报(自然科学版), 2007, 28(12): 1779-1781.
[8]  Fan Zhiping, Yue Qi, Feng Bo, et al. An approach to group decision-making with uncertain preference ordinals [J]. Computers & Industrial Engineering, 2010, 58(1): 51-57.
[9]  陈侠, 樊治平. 一种基于序区间偏好信息的群决策分析方法[J]. 运筹与管理, 2010, 19(4): 63-67.
[10]  乐琦, 樊治平. 一种具有不确定偏好序评价信息的群决策方法[J]. 运筹与管理, 2010, 19(6): 39-44.
[11]  Tone K,Tsutsui M.Nework DEA:a slacks-based measure approach[J].European Journal of Operational Research,2009,197:243-252.
[12]  Amatatsu H,Ueda T.Input-output tables and network DEA:Efficiencies of the 47 prefectures of Japan[J]. Proceedings of DEA Symposium, Japan, 2009:1-7.
[13]  You Tianhui, Fan Zhiping, Yu Zhuchao.An assignment method for group decision making with uncertain preference ordinals [J]. Journal of Systems Science and Systems Engineering, 2012, 21(2): 174-183.
[14]  Kao C. Efficiency measurement for parallel production systems[J]. European Journal of Operational Research,2009, 196:1107-1112.
[15]  Hwang C L, Yoon K. Multiple attribute decision making: methods and applications [M]. New York: Springer-Verlag, 1981.
[16]  Fare R,Grosskopf S.Network DEA[J].Socio-Economic Planning Science,2000,34:35-49.
[17]  Hwang C L, Lin M J. Group decision making under multiple criteria: methods and applications [M]. Berlin: Springer-Verlag, 1987.
[18]  相辉. 语言型时序多属性群决策方法及在服务创新中的应用 [J]. 运筹与管理, 2009, 18(4): 44-49.
[19]  Liang Liang,Yang Feng,Cook W D,Zhu J.DEA models for supply chain efficiency evaluation[J].Annals of Operations Research,2006,145(1):35-49.
[20]  梁昌勇, 张恩桥, 戚筱雯, 等. 一种评价信息不完全的混合型多属性群决策方法[J]. 中国管理科学, 2009, 17(4): 126-132. 浏览
[21]  Gonzále-Pachón J, Romero C. Aggregation of partial ordinal rankings: an interval goal programming approach [J]. Computers & Operations Research, 2001, 28(8): 827-834.
[22]  樊治平, 刘洋, 孙永洪. 一种具有序区间排序信息的多目标指派方法[J]. 工业工程与管理, 2008, 13(3): 42-45.
[23]  Tone K.A slacks-based measure of super-efficiency in data envelopment analysis [J].European Journal of Operational Research,2002,143:32-41.
[24]  Fan Zhiping, Liu Yang. An approach to solve group-decision-making problems with ordinal interval numbers [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2010, 40(5): 1413-1423.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133