全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

混合椭球分布下证券组合的尾部条件方差

, PP. 17-26

Keywords: 证券组合,风险度量,尾部条件方差,混合椭球分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

?由于风险价值、条件风险价值等下方风险度量没有考虑尾部数据的变异性,因此在刻画极端金融风险方面存在一定的缺陷。为了更好地控制尾部极端损失的发生概率,我们选择用尾部条件方差来刻画这种极端风险,即超过风险价值的那部分损失的方差。考虑到混合椭球分布在金融数据建模中的重要性,本文在这类分布下研究了证券组合的尾部条件方差,得到了证券组合尾部条件方差风险的精确表达式,为了验证本文的结果,我们也进行了一些数值计算及在最优投资组合方面的应用研究。

References

[1]  Markowitz H M. Portfolio selection[J]. Journal of Finance, 1952, 7: 77-91.
[2]  Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking & Finance,2002,26 (7): 1487-1503.
[3]  Tasche D. Expected shortfall and beyond[J]. Journal of Banking & Finance, 2002, 26(7): 1519-1533.
[4]  Yamai Y,Yoshiba T. Value-at-risk versus expected shortfall: a practical perspective[J].Journal of Banking & Finance, 2005, 29(4): 997-1015.
[5]  Chen Zhiping, Wang Yi. A new class of coherent risk measures based on p-norms and their applications[J].Applied Stochastic Models in Bussiness and Indursty, 2007, 23(1): 49-62.
[6]  王春峰,庄泓刚,房振明,等.多维条件方差偏度峰度建模[J].系统工程理论与实践, 2010, 30(2): 324-331.
[7]  Landsman Z.On the tail mean-variance optimal portfolio selection[J]. Insurance: Mathematics and Economics, 2010, 46(3): 547-553.
[8]  Kamdem J S. Value-at-Risk and expected shortfall for linear portfolios with elliptically distributed risk factors[J]. International Journal of Theoretical and Applied Financ, 2005, 8(5): 537-551.
[9]  Kamdem J S. VaR and ES for linear portfolios with mixture elliptic distributions risk factors[J]. Computing and Visualization in Science,2007,10(4): 197-210.
[10]  陈荣达,余乐安.多元混合正态分布情形下的外汇期权组合的非线性VaR模型[J].系统工程理论与实践, 2009,29(12): 65-72.
[11]  Szego G. Measures of risk[J].Journal of Banking & Finance, 2002, 26(7):1253-1272.
[12]  Kibzun A I, Kuznestsov E A. Analysis of criteria VaR and CVaR[J].Journal of Banking & Finance, 2006, 30(2): 779-796.
[13]  Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk[J].Mathematical Finance,1999, 9: 203-228.
[14]  Alexander S,Coleman T F, Li Y. Minimizing CVaR and VaR for a portfolio of derivatives[J]. Journal of Banking & Finance, 2006, 30(2): 583-605.
[15]  Zhu Shushang,Fukushima M. Worst-case conditional value-at-risk with application to robust portfolio management[J]. Operations Research, 2009, 57(5): 1155-1168.
[16]  Inui K,Kijima M. On the significance of expected shortfall as a coherent risk measure[J].Journal of Banking & Finance, 2005, 29(4): 853-864.
[17]  Acerbi C. Spectral measures of risk: a coherent representation of subjective risk aversion[J]. Journal of Banking & Finance, 2002, 26(7): 1505-1518.
[18]  Adam A, Houkari M, Laurent J P. Spectral risk measures and portfolio selection[J].Journal of Banking & Finance, 2008, 32(9): 1870-1882.
[19]  Takeda A,Kanamori T. A robust approach based on conditional value-at-risk measure to statistical learning problems[J].European Journal of Operational Research, 2009, 198(1): 287-296.
[20]  Alexander G J,Baptistia A M. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model[J]. Management Science, 2004, 50(9): 1261-1273.
[21]  Yu Jinping,Yang Xiaofeng, Li Shenghong. Portfolio optimization with CVaR under VG process[J].Research in International Business and Finance, 2009, 23(1): 107-116.
[22]  Hu Wenbo,Kercheval A N. Portfolio optimization for student t and skewed t returns[J]. Quantative Finance, 2010, 10(1): 91-105,18.
[23]  Zhu Shushang,Fukushima,M. Worst-case conditional value-at-risk with application to robust portfolio management[J].Operations Research, 2009, 57(5): 1155-1168.
[24]  Huang Dashan, Zhu Shushang,Fabozzi F J,Fukushima M. Portfolio selection under distributional uncertainty: A relative robust CVaR approach[J].European Journal of Operational Research, 2010, 203(1): 185-194.
[25]  Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3):21-41.
[26]  Rockafellar R T,Uryasev S. Conditional value-at-risk for general loss distributions[J].Journal of Banking & Finance, 2002, 26(7): 1443-1471.
[27]  Folmer H, Schied A. Convex measures of risk and trading constraints[J].Finance and Stochastics, 2002, 6(4): 429-447.
[28]  Cheng Zhiping, Yang Li. Nonlinearly weighted convex risk measure and its application[J].Journal of Banking & Finance, 2011, 35 (7): 1777-1793.
[29]  胡支军,黄登仕.一个非对称风险度量模型及组合证券投资分析[J].中国管理科学,2005, 13(2): 8-14.
[30]  周春阳,吴冲锋.基于目标的风险度量方法[J].管理科学学报, 2009, 12(6): 83-89.
[31]  Chen Zhiping, Wang Yi.Two-side coherent risk measure and its application in realistic portfolio optimization[J].Journal of Banking &Finance, 2008, 32(12): 2667-2673.
[32]  Gradshteyn I S,Ryzhik I M. Table of integrals, series, and products[M].New York: Academic Press, 2007.
[33]  Landsman Z. Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management[J].Journal of Computational and Applied Mathematics, 2008, 216(2): 319-327.
[34]  Jiang Chunfu,Yang Yukuan. Tail conditional variance of portfolio and applilations in Financial Engineering[J].Systems Engineering Procedia, 2011, 2: 213-221.
[35]  Peel D,Mclachlan G J. Robust mixture modelling using the t distribution[J]. Statistics and Computing, 2000, 10: 339-348.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133