全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电子商务推荐系统中群体用户推荐问题研究

, PP. 153-158

Keywords: 电子商务推荐系统,群体用户推荐,协同过滤,领域专家法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?尽管传统的电子商务推荐系统在个体用户推荐方面取得了巨大成功,但它并不适用于向群体用户进行推荐。随着虚拟社区中群体用户的不断增加,构建群体推荐系统,向群体用户提供个性化推荐,减少他们搜集信息所耗费的时间和精力显得越来越重要。基于此,本文提出了一种新颖的推荐方法—结合领域专家法的群体用户推荐算法。该算法以基于项目的协同过滤技术为基础,根据群体成员间的相互作用确定群体偏好,由群体偏好产生推荐,推荐过程中存在的成员未评分项采用领域专家法进行预测填充,此外本文算法还考虑了成员间相似关系对推荐质量的影响。实验结果表明了本文算法的有效性。

References

[1]  McCarthy J F, Anagnost T D. MusicFX: An arbiter of group preferences for computer supported collaborative workouts [C]//Proceedings of the 1998 ACM conference on computer-supported cooperative work. New York:ACM,1998: 363-372.
[2]  O’Connor M, Cosley D, Konstan JA, et al. PolyLens: A recommender system for groups of users[C]// Proceedings of the 7th European conference on computer supported cooperative work. Norwell:Kluwer Academic,2001.
[3]  Jameson A. More than the sum of its members: challenges for group recommender systems [C]// Proceedings of the working conference on advanced visual interfaces.New York:ACM, 2004.
[4]  Chen Yenliang,Cheng Lichen,Chuang Chingnan. A group recommendation system with consideration of interactions among group members [J]. Expert Systems with Applications, 2008, 34(3): 2082-2090.
[5]  当当网[EB/OL]. http://www.dangdang.com.
[6]  李聪,梁昌勇,马丽.基于领域最近邻的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1532-1538.
[7]  Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[8]  Ahn H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. Information Sciences, 2008, 178(1): 37-51.
[9]  Masthoff J, Gatt A. In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems [J]. User Modeling and User-Adapted Interaction, 2006, 16(3-4): 281-319.
[10]  郁雪,李敏强.基于PCA-SOM的混合协同过滤模型[J].系统工程理论与实践, 2010, 30(10): 1850-1854.
[11]  MacQueen J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley symposium on mathematical statistics and probability,1967:281-297.
[12]  Lee T Q, Park Y,Park Y T.An empirical sudy on effectiveness of temporal information as implicit ratings [J]. Expert Systews with Applications,2009,36(2):1315-1321.
[13]  Linden G, Smith B, York J. Amazon.com recommendations: item-to-item collaborative filtering [J]. IEEE Internet Computing, 2003, 7(1): 76-80.
[14]  Russell S, Yoon V. Applications of wavelet data reduction in a recommender system [J]. Expert System with Applications, 2008, 34(4): 2316-2325.
[15]  Shang Mingsheng, Jin Cihang, Zhou Tao,et al. Collaborative filtering based on multi-channel diffusion [J]. Physica A, 2009, 388(23): 4867-4871.
[16]  豆瓣网站[EB/OL]. http://www.douban.com.
[17]  McCarthy K, Salamó M, Coyle L, et al. Group recommender systems: A critiquing based approach [C]//Proceedings of the 11th international conference on intelligent user interfaces.New York:ACM,2006:267-269.
[18]  Herlocker J, Konstan J, Terveen L, et al. Evaluating collaborative filtering recommender systems [J]. ACM Transactions on Information Systems, 2004, 22 (1): 5-53.
[19]  Lee S K, Cho Y H, Kim S H. Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations [J]. Information Sciences, 2010, 180(11): 2142-2155.
[20]  邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法 [J].软件学报, 2003, 14(9): 1621-1628.
[21]  Sarwar B M. Sparsity, scalability, and distribution in recommender systems[D]. Minneapolis: University of Minnesota, 2001.
[22]  Lee J S, Olafsson S. Two-way cooperative prediction for collaborative filtering recommendations[J]. Expert Systems with Applications, 2009, 36: 5353-5361.
[23]  Movie Lens website[EB/OL]. http://movielens.umn.edu.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133