全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

通过延迟阶跃函数求解重复性项目控制路线的方法研究

, PP. 118-126

Keywords: 控制路线,延迟阶跃函数,重复性项目调度,控制工序

Full-Text   Cite this paper   Add to My Lib

Abstract:

?确定控制路线是重复性项目调度技术的基础,目前缺乏一种统一的确定控制路线的方法。本文研究在重复性项目中通过延迟阶跃函数确定控制路线的方法。首先通过延迟阶跃函数拟合重复性项目中的各种类型工序系,表示工序系的约束线,并计算各工序系的潜在控制点和开始、结束时间,在此基础上提出了完整的确定重复性项目控制路线的具体步骤。文章以一个高速公路建设项目为例与国际上已有的确定控制路线的方法进行了对比,结果表明,本文所提出的方法更契合工程的实际要求、适用性更强,且更便于计算机处理。

References

[1]  蒋根谋, 熊燕. 线性计划方法及其应用研究[J]. 华东交通大学学报, 2008, 25(5): 8-11.
[2]  Harmelink D J, Rowings J E. Linear scheduling model: development of controlling activity path[J]. Journal of Construction Engineering and Management, 1998, 124(4): 263-268.
[3]  Lucko G, Orozco A A P. Float types in linear schedule analysis with singularity functions[J]. Journal of Construction Engineering and Management, 2009, 135(5): 368-377.
[4]  Harmelink D J. Linear scheduling model: float characteristics[J]. Journal of Construction Engineering and Management, 2001, 127(4): 255-260.
[5]  Lucko G. Productivity scheduling method: linear schedule analysis with singularity functions[J]. Journal of Construction Engineering and Management, 2009, 135(4): 246-253.
[6]  Mattila K G, Park A. Comparison of linear scheduling model and repetitive scheduling method [J]. Journal of Construction Engineering and Management, 2003, 129(1): 56-64.
[7]  Mattila K G, Abraham D M. Linear scheduling: Past research efforts and future dierctions[J]. Engineering Constrcution and Architectural Management, 1998, 5(3): 294-303.
[8]  Voester M C, Beliveau Y J, Bafna T. Linear scheduling and visualization[J]. Transportation Research Record, 1992, 32-39.
[9]  Kallantzis A, Lambropoulos S. Critical path determination by incorporating minimum and maximum time and distance constrains into linear scheduling[J]. Engineering Construction and Architectural Management, 2004, 11(3): 211-222.
[10]  乞建勋, 赵岫华, 苏志雄."统筹法"网络中经典概念的拓广及应用[J]. 中国管理科学, 2010, 18(1):184-192. 浏览
[11]  Harris R B, Ioannou P G. Scheduling projects with repeating activities[J]. Journal of Construction Engineering and Management, 1998, 124(4): 269-278.
[12]  Kallantzis A, Soldatos J, Lambropoulos S. Linear versus network scheduling:a critical path comparison[J]. Journal of Construction Engineering and Management, 2007, 133(7): 483-491.
[13]  Kallantzis A, Lambropoulos S. Correspondence of activity relationships and critical path between time-location diagrams and CPM [J]. Operational Research, 2004, 4(3): 277-290.
[14]  Yamín R A, Harmelink D J. Comparison of linear scheduling model(LSM) and critical path method(CPM)[J]. Journal of Construction Engineering and Management, 2001, 127(5): 374-381.
[15]  Arditi D, Tokdemir O B, Suh K. Effect of learning on line-of-balance scheduling[J]. International Journal of Project Management, 2001(19): 265-277.
[16]  O’Brien J J. VPM scheduling for high-rise buildings[J]. Journal of the Construction Division, ASCE, 1975, 101(CO4), 895-905.
[17]  RedaR M. RPM: repetitive project modeling[J]. Journal of Construction Engineering and Management, 1990 116(2): 316-330.
[18]  Mahdi I M, A new LSM approach for planning repetitive housing projects[J]. International Journal of Project Management, 2004, 22: 339-346.
[19]  Mattila K G, Abraham D M. Resource leveling of linear schedules using integer linear programming[J]. Journal of Construction Engineering and Management, 1998, 124(3): 232-244.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133