全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机的中国股指期货回归预测研究

, PP. 35-39

Keywords: 中国股指期货,支持向量机,遗传算法,粒子群算法,回归预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文针对股指期货预测的特点,选择对股指期货指数有重要影响的相关指标,首次提出用支持向量机(SVM)方法对其进行回归预测,并用遗传算法(GA)和粒子群算法(PSO)分别优化四种不同核函数的支持向量机,构建了八种不同的中国股指期货回归预测方案,用实证研究的方法对这八种方案的准确性和时效性进行了比较。实验结果表明粒子群算法优化的线性核函数支持向量机作为中国股指期货回归预测的模型,具有更好的预测效果。

References

[1]  Trafalis T,Ince H.Support vector machine for regression and applications to financial forecasting[C].Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks,Como,July 24-27,2000.
[2]  Ince H,Trafalis T.Short term forecasting with support vector machines and application to stock price prediction[J].International Journal of General Systems,2008,37(6):677-687.
[3]  Tay F E H,Cao Lijuan.Improved financial time series forecasting by combining support vector machines with self-organizing feature map[J].Intelligent Data Analysis,2001,5(4):339-354.
[4]  Cao Lijuan, Tay F E H.Financial forecasting using support vector machines[J].Neural Computing & Applications,2001,10(2):184-192.
[5]  Tay F E H,Cao Lijuan.Application of support vector machines in financial time series forecasting[J].Omega,2001,29:309-317.
[6]  Kim K.Financial time series forecasting using support vector machines[J].Neurocomputing,2003,55(1-2):307-320.
[7]  张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,1(26):32-42.
[8]  Vapnik V.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
[9]  邓乃扬,田英杰.数据挖掘中的新方法一一支持向量机[M].北京:科学出版社,2004.
[10]  Holland J.Adaptation in natural and artificial systems[M].Ann Arbor:University Michigan Press,1975.
[11]  Kennedy J,Eberhart R C.Particle swarm optimization[C].International Conference on Neural Networks,Perth,Nov.27-Dec 01,1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133