全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于行业相关性的银行业信用风险宏观压力测试研究

, PP. 11-19

Keywords: 宏观压力测试,行业相关性,系统性风险,顺周期性,蒙特卡洛模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

?遵循宏观审慎管理的原则和理念,提出了基于行业相关性的银行业信用风险宏观压力测试方法。通过考虑行业相关性和风险因子t分布特性,对多元风险因子模型进行了拓展;将宏观压力测试情景与多元风险因子模型对接起来,将压力情景下得到的行业景气指数取值转换为相应压力情景下行业风险因子的条件分布;在考察宏观经济周期的基础上,采用指数平滑法、回归模型方法和历史情景分析方法处理宏观经济整个周期的历史数据,从而确定宏观压力测试的情景设置,这种情景设置能消除信用风险计量的顺周期性。这一过程将银行业经济资本管理与系统性风险防范有机地联系起来。这一信用风险宏观压力测试方法能反映不同行业信贷资产间的违约相关性,能识别某一行业衰退对其他行业信贷资产产生的负面影响,从而反映系统性风险的来源及其作用机理。

References

[1]  周小川. 金融政策对金融危机的响应-宏观审慎政策框架的形成背景、内在逻辑和主要内容[J]. 金融研究, 2011, (1):1-14.
[2]  张健华, 贾彦东.宏观审慎政策的理论与实践进展[J]. 金融研究, 2012, (1):20-35.
[3]  彭建刚, 易昊, 童磊.基于系统性风险防范的金融压力测试新理念[J]. 湖南大学学报(社会科学版), 2012, 26(5):37-43.
[4]  DrehMann M. Stress tests:Objectives, challenges and modelling choices[J]. Riksbank Economic Review, 2008, 94(2), 60-92.
[5]  Virolainen K. Macro stress-testing with a macroeconomic credit risk model for finland[R]. Discussion Papers, Bank of Finland, 2004.
[6]  Van D E, Hoeberichts M, Tabbae M. Modelling scenario analysis, macro stress-testing[R]. Working Paper, De Nederlandsche Bank, 2006.
[7]  Wong J, Choi K F, Fong P W.A framework for stress testing banks' credit risk[J]. The Journal of Risk Model Validation, 2008, 2(1):3-23.
[8]  Havrlchyk O. A macroeconomic credit risk model for stress testing the South African banking Sector[R]. Working Paper, University Library of Munich, 2010.
[9]  Ali A, Daly K. Macroeconomic determinants of credit risk:Recent evidence from a cross country study[J]. International Review of Financial Analysis, 2010, 19(2):165-171.
[10]  Jimenez G, Mencia J. Modelling the distribution of credit losses with observable and latent factors[J]. Journal of Empirical Finance, 2009, 16(2):235-253.
[11]  Filosa R. Stress testing of the stability of the Italian banking system:A VAR approach[J]. Heterogeneity and Monetary Policy, 2007, 703(1):1-46.
[12]  Marcucci J, Quagliariello M. Is bank portfolio riskiness procyclical? Evidence from Italy using a Vector Autoregression[J]. Journal of International inancial Markets, Institutions and Money, 2008, 18 (1):46-63.
[13]  谭晓红, 樊纲治.我国商业银行宏观压力测试研究[J]. 投资研究, 2011, (12):3-16.
[14]  Castren O, Fitzpatrick T, Sydow M. Assessing portfolio credit risk changes in a sample of EU large and complex banking groups in reaction to macroeconomic shocks[R]. working paper, ECB, 2009.
[15]  Klaus D, Martin E. Crash testing German banks[J].International Journal of Central Banking, 2009, 5(3):139-175.
[16]  彭建刚, 吕志华. 基于行业特性的多元系统风险因子CreditRisk+模型[J].中国管理科学, 2009, 17(3):56-64. 浏览
[17]  Huang Xin, Zhou Hao, Zhu Haibin. A framework for assessing the systemic risk of major financial institutions[J]. Journal of Banking and Finance, 2009, 33(11):2036-2049.
[18]  Segoviano M A, Goodhart C. Banking stability measures[R]. Working Papers, IMF, 2009.
[19]  Grass G. Using structural models for default prediction[R].Working Paper, University of Fennsylvania, 2009.
[20]  Alessandri P, Gai P, Kapadia S, et al. Towards a framework for quantifying systemic stability[J]. International Journal of Central Banking, 2009, 5(3):47-81.
[21]  Finger C. Conditional approaches for credit metrics portfolio distributions[J]. Credit Metrics Monitor, 1997, 7(1):14-33.
[22]  林宇, 卫贵武, 魏宇, 等.基于Skew-t-FIAPARCH的金融市场动态风险VaR测度研究[J].中国管理科学, 2009, 17(6):17-24. 浏览
[23]  Buncic D, Melecky M. Macroprudential stress testing of credit risk-A practical approach for policy makers[J]. Journal of financial stability, 2013, 9(3):347-370.
[24]  徐国祥, 檀向球.我国A股市场系统性风险的实证研究[J].统计研究, 2002, (5):37-40.
[25]  董进.宏观经济波动周期的测度[J]. 经济研究, 2006, (7):41-48.
[26]  杜红军, 王宗军. 基于Copula-AL法的VaR和CVaR的度量与分配[J].中国管理科学, 2012, 20(3):1-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133