Levy H. Stochastic dominance: Investment decision making under uncertainty [M]. Dordrecht: Kluwer Academic Publishers, 1998.
[2]
Tsetlin I, Winkler R L. On equivalent target-oriented formulations for multiattribute utility [J]. Decision Analysis, 2006, 3(2): 94-99.
[3]
Nowak M. INSDECM-an interactive procedure for stochastic multicriteria decision problem [J]. European Journal of Operational Research, 2006, 175(3): 1413-1430.
[4]
Nowak M. Aspiration level approach in stochastic MCDM problems [J]. European Journal of Operational Research, 2007, 177(3): 1626-1640.
[5]
Jacquet-Lagrèze E, Siskos Y. Assessing a set of additive utility functions for multicriteria decision making: The UTA method [J]. European Journal of Operational Research, 1982, 10:151-164.
[6]
Wang Yingming, Yang Jianbo, Xu Dongling. A preference aggregation method through the estimation of utility intervals [J]. Computers & Operations Research, 2005, 32(8): 2027-2049.
[7]
Simon H A. A behavioral model of rational choice [J]. Quarterly Journal of Economics, 1955, 69(1): 99-118.
[8]
Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk [J]. Econometrica, 1979, 47(2): 263-291.
Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty [J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323.
[15]
Chip H, Richard P L, Wu G. Goals as reference points [J]. Cognitive Psychology, 1999, 38(1): 79-109.
[16]
Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function [J]. European Journal of Operational Research, 1990, 48(2): 219-225.
[17]
Bromiley P. A prospect theory model of resourceallocation [J]. Decision Analysis, 2009, 6(3): 124-138.
[18]
Avineri E. The effect of reference point on stochastic network equilibrium [J]. Transportation Science, 2006, 40(4): 409-420.