全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于可变强度跳跃-GARCH模型的资产价格跳跃行为分析——以中国上市公司股票市场数据为例

, PP. 1-9

Keywords: 资产价格,跳跃,风险,可变强度,门限效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近年来,美国金融危机、欧债危机、地震等突发事件不断冲击着我国金融市场,各类资产价格频繁出现大幅跳动,收益风险短期内急剧扩大。鉴于此,本文构建了门限效应下状态变量依赖自回归强度跳跃-GARCH模型(简称TSD-ARJI-GARCH模型)来探讨股票资产价格随时间平滑波动和大幅度跳跃的双重特征。该模型扩展了现有可变强度跳跃-GARCH模型,克服了片面强调内生或外生因素的局限性,既允许跳跃强度受单个资产异质因素的内生驱动,以刻画跳跃变化的时变性及集聚性,也考虑了外部状态变量影响的门限效应。通过对不同类型中国上市公司股票市场数据的实证分析,验证了该模型对各类上市公司股票资产价格跳跃特征都具有较好的辨别和预测能力,可为动态监管金融资产的跳跃风险提供理论依据。

References

[1]  Maheu J M, McCurdy T H. News arrival, jump dynamics and volatility components for individual stock returns [J]. Journal of Finance, 2004, 59(2):755-793.
[2]  Press S J. A compound events model for security prices [J]. Journal of Business, 1967, 40(3):317-335.
[3]  Akgiray V, Booth G G. Mixed jump-diffusion process modeling of exchange rate movements [J]. Review of Economics and Statistics, 1988, 70:631-637.
[4]  Tucker A, Pond L. The probability distribution of foreign exchanges: Tests of candidate processes [J]. Reviews of Economics and Statistics, 1988, 70(4):638-647.
[5]  Ball C A, Torous W N. A simplified jump process for common stock returns [J]. Journal of Financial and Quantitative Analysis, 1983, 18(1):53-65.
[6]  Bekaert G, Gray S F. Target zones and exchange rates: An empirical investigation [J]. Journal of International Economics, 1998, 45(1):1-35.
[7]  Neely C J. Target zones and conditional volatility: The role of realignments[J]. Journal of Empirical Finance, 1999, 6(2):177-192.
[8]  Das S R. The surprise element: Jumps in interest rate [J]. Journal of Econometrics, 2002, 106(1):27-65.
[9]  Johannes M, Kumar R, Polson N G. State dependent jump models: How do U.S. equity indices jump. Working Paper, Graduate School of Business, University of Chicago,1999.
[10]  Chan W H, Maheu J M. Conditional jump dynamics in stock market returns [J]. Journal of Business & Economic Statistics, 2002, 20(3):377-389.
[11]  Daal E, Naka A, Yu J S. Volatility clustering, leverage effects and jump dynamics in the US and emerging Asian equity markets [J]. Journal of Banking & Finance, 2007, 31(9):2751-2769.
[12]  陈浪南, 孙坚强. 股票市场资产收益的跳跃行为研究[J]. 经济研究, 2010, 45(4):54-66.
[13]  谈正达, 胡海鸥. 短期利率跳跃-扩散模型的非参数门限估计[J]. 中国管理科学, 2012, 5(1):8-15.
[14]  陈永伟. 股市波动的杠杆效应检验:一种新的方法[J]. 中国管理科学, 2012, 20(5):31-37. 浏览
[15]  Merton R C. Option pricing when underlying stock return are discontinuous [J]. Journal of Financial Economics, 1976, 3(1-2):125-144.
[16]  唐齐鸣, 黄苒. 中国上市公司违约风险的测度与分析——跳―扩散模型的应用[J]. 数量经济技术经济研究, 2010, 27(10):101-115.
[17]  Klebaner F C. Introduction to stochastic calculus with applications[M]. Znd ed.london:Imperial College Press, 2005.
[18]  黄苒. 基于跳跃行为的中国上市公司股票资产收益和违约风险研究.武汉:华中科技大学, 2011.
[19]  魏宇, 余怒涛,中国股票市场的波动率预测模型及其SPA检验[J]. 金融研究, 2007, (7):138-150.
[20]  方立兵, 郭炳伸, 曾勇. GARCH族模型的预测能力比较:一种半参数方法[J]. 数量经济技术经济研究, 2010, (4):148-161.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133