全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非参数估计框架的期望效用最大化最优投资组合

, PP. 1-9

Keywords: 投资组合选择,幂效用函数,期望效用最大化模型,非参数估计,最优投资策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文基于期望效用最大化和非参数估计框架研究了最优投资组合选择问题。和以往大多文献假定资产收益率服从某些特定分布不同资产收益率的分布类型无需作任何假设。首先在一般效用函数下,利用组合收益率密度函数的非参数核估计给出了期望效用的基本非参数估计公式,并建立了期望效用最大化投资组合选择问题的基本框架。然后,在投资者具有幂效用函数的假定下,给出了期望效用具体的非参数计算公式,并给出了求解最大期望效用的数值算法。最后,利用中国证券交易所11支股票日收益率的真实数据给出了一个数值算例。本文提出的非参数估计框架具有一般性,还可以进一步用来研究各种现实条件下(如各种现实不等式约束和具有交易成本)的投资组合管理问题。

References

[1]  Neumann J V, Morgenstern O.Theory of games and economic behavior[M]. Princeton, New Jersey: Princeton University Press, 1944.
[2]  Markowitz H. Portfolio selection[J].Journal of Finance, 1952, (4): 77-91.
[3]  Arrow K. Essays in the theory of risk-bearing[M]. Chicago: Markham Publishing Company, 1971.
[4]  Hart O. Some negative results on the existence of comparative statics results in portfolio theory[J].Review of Economic Studies, 1975, 42(4): 615-621.
[5]  Cheng H C, Magill M J P, Shafe W J. Some results on comparative statics under uncertainty[J]. International Economic Review, 1987, 28(2): 493-507.
[6]  Samuelson P A.Lifetime portfolio selection by dynamic stochastic programming[J]. Review of Economics and Statistics, 1969, 51(3): 239-246.
[7]  Merton R C. Lifetime portfolio selection under uncertainty: The continuous-time model[J].Review of Economic and Statistics, 1969, 51(3): 247-256.
[8]  Munk C. Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences[J]. Journal of Economic Dynamics and Control, 2008, 32(11): 3560-3589.
[9]  Bensoussan A, Keppo J, Sethi S P. Optimal consumption and portfolio decisions with partially observed real prices[J].Mathematical Finance, 2009, 19(2): 215-236.
[10]  Canakoglu E, ?zekici S. Portfolio selection in stochastic markets with HARA utility functions[J]. European Journal of Operational Research, 2010, 201(2): 520-536.
[11]  Li Qi, Racine J S. Nonparametric econometrics: Theory and practice[M]. New Jersey: Princeton University Press, 2007.
[12]  Chen Songxi.Nonparametric estimation of expected shortfall[J]. Journal of Financial Econometrics, 2008, 6(1):87-107.
[13]  Jeong S O, Kang K H. Nonparametric estimation of value-at-risk.Journal of applied statistics, 2009, 36(11): 1225-1238.
[14]  Yu Keming, Allay A, Yang S, et al. Kernel quantile based estimation of expected shortfall[J]. The Journal of Risk, 2010, 12(4): 15-32.
[15]  Hardle W, Muller M, Sperlich S, et al. Nonparametric and semiparametric models[M]. Berlin: Springer, 2004.
[16]  Epanechnikov V. Nonparametric estimation of a multidimensional probability density[J]. Teoriya Veroyatnostej i Ee Primeniya, 1969, 14(1):156-162.
[17]  马昌凤.最优化方法及其Matlab程序设计[M].北京:科学出版社, 2010.
[18]  Colson B, Marcotte P, Savard G. An overview of bilevel optimization[J]. Annals of Operations Research, 2007, 153(1): 235-256.
[19]  Bard J F. Practical bilevel optimization: Algorithms and applications[M]. Dordrecht: Kluwer Academic, 1999.
[20]  Dempe S. Foundations of bilevel programming[M]. Dordrecht: Kluwer Academic, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133