全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于区间灰数的灰色定权聚类

, PP. 139-146

Keywords: 灰色聚类,区间灰数,白化权函数,标准化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对灰色定权聚类模型中白化权函数转折点只能为实数的情况,提出了当转折点为区间灰数时的白化权函数构造方法与计算过程。首先定义了区间灰数的标准化方法,将区间灰数的标准化形式带入实数型白化权函数,给出了区间灰数型白化权函数的表达式。然后分别对区间灰数型白化权函数中分段曲线只有一端为区间灰数和分段曲线两端均为区间灰数的情况进行讨论,得出两种情况下区间灰数型白化权函数值,并给出了区间灰数型典型白化权函数的四个转折点均为区间灰数的一般表达式。最后将该模型应用于许昌市民营企业核心竞争力的聚类评价中,取得了良好的结论。

References

[1]  Deng Julong. Control problems of unknown system[J]. Proceedings of the Bilateral Meeting on Control systems,1981, 156-171.
[2]  Savaskan R C, Bhattacharya S, Van Wassenhove L N. Closed-loop supply chain models with product remanufacturing[J]. Management science, 2004, 50(2):239-252.
[3]  刘思峰,谢乃明. 基于改进三角白化权函数的灰评估新方法[J].系统工程学报,2011,26(2):244-250.
[4]  王文宾, 达庆利, 聂锐. 考虑渠道权力结构的闭环供应链定价与协调[J]. 中国管理科学, 2011, 19(5):29-36. 浏览
[5]  董一哲,党耀国. 基于离差最大化的灰色聚类方法[J].系统工程理论与实践, 2009. 29(9):141-146.
[6]  宋捷,党耀国,花增木. 基于灰色聚类的群决策方法研究[J].控制与决策, 2010, 25(10):1593-1597.
[7]  Singh N, Vives X. Price and quantity competition in a differentiated duopoly[J]. The RAND Journal of Economics, 1984,15(4):546-554.
[8]  Ghazanfar M A, Prugel-Bennett A. Leveraging clustering approaches to solve the gray-sheep users problem in recommender systems[J]. Expert Systems with Applications, 2014, 41(7):3261-3275.
[9]  Cachon G P. Supply chain coordination with contracts[J]. Handbooks in operations research and management science, 2003, 11:229-340.
[10]  Wang Jianling, Wu Junyan. The empirical study of airline service dimension based on grey incidence cluster[J]. Journal of Grey System, 2014, 26(2):154-161.
[11]  Xie Naiming, Xin Jianghui,Liu Sifeng. China's regional meteorological disaster loss analysis and evaluation based on grey cluster model[J]. Natural Hazards,2014, 71(2):1067-1089.
[12]  Wang Shuwei,Sun Lishan, Rong Jian,et al. Transit station congestion index research based on pedestrian simulation and gray clustering evaluation[J]. Discrete Dynamics in Nature and Society, 2013, ID 891048, 1-8.
[13]  张志勇, 吴声. 基于白化权函数的区间灰数关联度模型[J].中国管理科学, 2015,23(1):154-162. 浏览
[14]  刘勇,菅利荣,刘思峰. 杂合灰色聚类与变精度粗糙模糊集的概率决策方法[J].系统工程,2012,30(5):89-95.
[15]  王玉燕. 收益共享契约下闭环供应链应对突发事件的协调分析[J]. 中国管理科学, 2009, 17(6):78-83.
[16]  王玉燕. 回购契约下闭环供应链应对突发事件的协调应对[J]. 运筹与管理, 2009, 18(6):46-52.
[17]  李新然, 牟宗玉. 需求扰动下闭环供应链的收益费用共享契约研究[J]. 中国管理科学, 2013, 21(6):88-96. 浏览
[18]  王旭, 王银河. 需求和回收扰动的闭环供应链定价和协调[J]. 计算机集成制造系统, 2013, 19(3):624-630.
[19]  Li Xican. Zhang Guangbo, Qi Fengyan,et al. Grey cluster estimating model of soil organic matter content based on hyper-spectral data[J]. Journal of Grey System, 2014, 26(2):28-37.
[20]  张岐山. 灰聚类分析结果灰性的测度[J].中国管理科学,2002, 10(1):54-56.
[21]  Giutini R, Gaudette K. Remanufacturing:The next great opportunity for boosting US productivity[J]. Business Horizons, 2003, 46(6):41-48.
[22]  Zhang Qishan, Wang Haiyan. Measuring the greyness of grey cluster knowledge[J]. Journal of Grey System, 2009, 21(3):259-268.
[23]  Debo L G, Toktay L B, Van Wassenhove L N. Market segmentation and product technology selection for remanufacturable products[J]. Management Science, 2005, 51(8):1193-1205.
[24]  Yuan Chaoqing, Liu Sifeng. Core of grey cluster and its application in evaluation of scientific and technological strength[J]. Journal of Grey System, 2012,24(4):327-336.
[25]  Ferrer G, Swaminathan J M. Managing new and differentiated remanufactured products[J]. European Journal of Operational Research, 2010, 203(2):370-379.
[26]  党耀国,刘思峰. 聚类系数无显著性差异下的灰色综合聚类方法研究[J].中国管理科学,2005,13(4):69-73.
[27]  米传民,刘思峰,党耀国,等. 灰色熵权聚类决策方法研究[J].系统工程与电子技术, 2006,28(12):1823-1825.
[28]  王正新,党耀国,刘思峰. 基于白化权函数分类区分度的变权灰色聚类[J].统计与信息论坛,2011,26(6):23-27.
[29]  郑克俊. 存在价格差异的闭环供应链定价策略及契约协调[J]. 运筹与管理, 2012, 21(1):118-123.
[30]  周伟杰, 党耀国, 熊萍萍, 等. 区间灰数的灰色变权与定权聚类模型[J]. 系统工程理论与实践, 2013,33(10):2590-2595.
[31]  郭海英,庞彦军. 确认度意义下区间灰数的一种序关系[J]. 河北建筑科技学院学报, 2003,20(1):85-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133