全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MCS方法的高斯仿射利率期限结构模型研究

, PP. 10-17

Keywords: 高斯仿射期限结构,可识别性,极大似然估计量,最小卡方估计量

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文在最小卡方估计方法基础上研究了高斯仿射利率模型的参数识别和估计问题。以标准化高斯模型为起点,从结构化模型和简约化模型参数的函数关系出发研究高斯仿射模型的可识别性,最小卡方估计量继承了结构化模型极大似然估计量的所有渐进性质并保证了参数估计量的可靠性。以上交所2006-2013年隐含于国债价格月度数据的零息票收益率为样本采用最小卡方方法实证研究了高斯仿射期限模型,结论表明高斯仿射模型很好的拟合了观测的期限结构,并且整体上看简约型和结构型参数估计量的统计性质的优劣具有一致性。

References

[1]  Vasicek O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2):177-188.
[2]  Duffie D, Kan Rui. A yield-factor model of interest rates[J]. Mathematical Finance, 1996, 6(4):379-406.
[3]  Dai Qiang, Singleton K J. Expectations puzzles, time-varying risk premia and affine models of the term structure[J]. Journal of Financial Economics, 2002, 63(3):415-441.
[4]  Duffee G R. Term premia and interest rate forecasts in affine models[J]. Journal of Finance, 2002, 57(1):405-443.
[5]  Cochrane J H, Piazzesi M. Decomposing the yield curve.Working Paper,University of Chicago and NBER, 2008.
[6]  Christensen J H E, Diebold F X, Rudebusch G D. The affine arbitrage-free class of nelson-siegel term structure models[J]. Journal of Econometrics, 2011, 164(1): 4-20.
[7]  Nelson C R, Siegel A F. Parsimonious modeling of yield curves[J]. Journal of Business, 1987,60(4):473-489.
[8]  Collin-Dufresne P, Goldstein R S, Jones C S. Identification of maximal affine term structure models[J]. Journal of Finance, 2008, 63(2): 743-795.
[9]  At-Sahalia Y, Kimmel R L. Estimating affine multifactor term structure models using closed-form likelihood expansions[J]. Journal of Financial Economics,2010, 98(1):113-144.
[10]  Kim D H. Challenges in macro-finance modeling. Working Paper, Federal Reserve Bank of st. Louis,2009.
[11]  Ang A., Piazzesi M. A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables[J]. Journal of Monetary Economics, 2003, 50(4): 745-787.
[12]  Hamilton J D, Wu J C. Identification and estimation of Gaussian affine term structure models[J]. Journal of Econometrics, 2012, 168(2): 315-331.
[13]  Rothenberg T J. Efficient estimation with a priori information[M]. Yale University Press, 1973.
[14]  Joslin S, Singleton K J, Zhu Haoxiang. A new perspective on gaussian dynamic term structure models[J]. Review of Financial Studies, 2011, 24(3): 926-970.
[15]  Chen R R, Scott L. Maximum likelihood estimation for a multifactor equilibrium model of the term structure of interest rates[J]. The Journal of Fixed Income, 1993, 3(3): 14-31.
[16]  Le A, Dai Qiang, Singleton K J. Discrete-time affine Q term structure models with generalized market prices of risk[J]. Review of Financial Studies, 2010, 23(5): 2184-2227.
[17]  吴恒煜,陈鹏,严武,等. 基于Copula的两因子Vasicek利率模型实证研究[J]. 管理学报,2010,7(10): 1529-1534.
[18]  周荣喜,王晓光. 基于多因子仿射利率期限结构模型的国债定价[J]. 中国管理科学,2011,19(4): 26-30. 浏览
[19]  文兴易,黎实. 基于局部线性逼近的利率期限结构动态NS模型[J].管理学报,2012,9(7): 975-978.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133