全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有多元马氏需求的多产品多阶段库存优化模型

, PP. 151-160

Keywords: 多产品多阶段库存,多元马尔可夫模型,最优(Q,R,SS)策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文研究一类新的多产品库存控制策略,即具有多元马氏需求特征的多产品多阶段的订货点订货量(Q,R,SS)策略,该策略考虑市场需求在不同产品之间具有多元马氏转移特征,并考虑缺货因素设置安全库存。论文首先建立了多产品多阶段的多元马氏需求预测模型,并通过该模型确定了各种产品需求之间的关系。同时,在该模型的理论基础上,提出了多产品多阶段的总期望成本模型及其最优(Q,R,SS)策略,进而结合算例给出模型的最优策略的数值解。

References

[1]  Cárdenas-Barrón L E, Trevi?o G, Wee H M. A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model[J]. Expert Systems with Applications, 2012, 39(3): 3888-3895.
[2]  Yang Xu, Heragu S S, Evans G W. Integrated production-inventory-distribution optimization in a multi-echelon, multi-product, multi-carrier, multi-period system[J]. International Journal of Value Chain Management, 2010, 4(3): 267-287.
[3]  Choi S, Ruszczyński A. A multi-product risk-averse newsvendor with exponential utility function[J]. European Journal of Operational Research, 2011, 214(1): 78-84.
[4]  Murray C C, Gosavi A, Talukdar D. The multi-product price-setting newsvendor with resource capacity constraints[J]. International Journal of Production Economics, 2012, 138(1): 148-158.
[5]  De Schrijver S K, Aghezzaf E H, Vanmaele H. Aggregate constrained inventory systems with independent multi-product demand: Control practices and theoretical limitations[J]. International Journal of Production Economics, 2013,143(2):416-423.
[6]  Zhou Weiqi, Chen Long, Ge Huiming. A multi-product multi-echelon inventory control model with joint replenishment strategy[J]. Applied Mathematical Modelling, 2013, 37(4): 2039-2050.
[7]  秦进,史峰,缪立新,等.考虑随机需求和库存决策的多商品物流网络设计优化模型与算法[J]. 系统工程理论与实践,2009,29(4):176-183.
[8]  胡玉梅,胡劲松,杨飞雪,等.模糊随机需求下多产品报童问题的均衡策略[J]. 运筹与管理,2011,20(1):72-77.
[9]  黄松,杨超,张曦.考虑战略顾客行为带预算约束的多产品报童问题[J]. 中国管理科学, 2011, 19(3): 70-78. 浏览
[10]  周欣,霍佳震.循环取货下基于随机提前期波动压缩的库存优化模型[J]. 系统工程理论与实践,2012,32(4):760-768.
[11]  李季,周李超,王汉生.多产品协同促销模式下的零售商促销时间决策模型[J]. 中国管理科学,2013,21(4):89-97. 浏览
[12]  Karlin S. Dynamic inventory policy with varying stochastic demands [J]. Management Science, 1960, 6(3): 231-258.
[13]  Song Jingsheng, Zipkin P. Inventory control in a fluctuating demand environment[J]. Operations Research, 1993, 41(2): 351-370.
[14]  Chen Fangruo, Song Jingsheng. Optimal policies for multiechelon inventory problems with Markov-modulated demand[J]. Operations Research, 2001, 49(2): 226-234.
[15]  Raftery A E. A model for high-order Markov chains[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1985,47(3): 528-539.
[16]  Ching W K, Fung E S, Ng M K. A multivariate Markov chain model for categorical data sequences and its applications in demand predictions[J]. IMA Journal of Management Mathematics, 2002, 13(3): 187-199.
[17]  Ching W K, Ng M K, Fung E S. Higher-order multivariate Markov chains and their applications[J]. Linear Algebra and its Applications, 2008, 428(2): 492-507.
[18]  楼润平,薛声家.两个实用的安全库存公式[J]. 系统工程,2008,26(12):77-82.
[19]  Dvoretzky A, Kiefer J, Wolfowitz J. The inventory problem:Case of known distributions of demand[J]. Econometrica: Journal of the Econometric Society, 1952, 20(2):187-222.
[20]  Shao Zhen, Ji Xiaoyu. Fuzzy multi-product constraint newsboy problem[J]. Applied Mathematics and Computation, 2006, 180(1): 7-15.
[21]  Haksever C, Moussourakis J. Determining order quantities in multi-product inventory systems subject to multiple constraints and incremental discounts[J]. European Journal of Operational Research, 2008, 184(3): 930-945.
[22]  Taleizadeh A A, Niaki S T A, Aryanezhad M B. A hybrid method of Pareto, TOPSIS and genetic algorithm to optimize multi-product multi-constraint inventory control systems with random fuzzy replenishments[J]. Mathematical and Computer Modelling, 2009,49(5): 1044-1057.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133