Scarf H. Some remarks on Bayes solutions to the inventory problem[J]. Naval Research Logistics Quarterly, 1960, 7(4): 591-596.
[9]
Scarf H. Bayes solution to the statistical inventory problem[J]. Annals of Mathematical Statistics, 1959, 30(2): 490-508.
[10]
Karlin S. Dynamic inventory policy with varying stochastic demands[J]. Management Science, 1960, 6(3): 231-258.
[11]
Iglehart D L. The dynamic inventory problem with unknown demand distribution[J]. Management Science, 1964, 10(3): 429-440.
[12]
Liyanage L H, Shanthikumar J G. A practical inventory control policy using operational statistics[J]. Operations Research Letters, 2005, 33(4): 341-348.
[13]
O'Neil S, Chaudhary A. Comparing online learning algorithms to stochastic approaches for the multi-period newsvendor problem[C]. Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments, San Francisco,California,January19,2008.
[14]
Huh W T, Janakiraman G, Muckstadt J A, et al. An adaptive algorithm for finding the optimal base-stock policy in lost sales inventory systems with censored demand[J]. Mathematics of Operations Research, 2009, 34 (2): 397-416.
[15]
Huh W T, Levi R, Rusmevichientong P, et al. Adaptive data-driven inventory control policies based on Kaplan-Meier estimator for censored demand[J]. Operations Research, 2011, 59(4): 929-941.
[16]
Huh W T, Rusmevichientong P. A non-parametric asymptotic analysis of inventory planning with censored demand[J]. Mathematics of Operations Research, 2009, 34 (1): 103-123.
[17]
Zhu Zhisu, Zhang Jiawei, Ye Yinyu. Newsvendor optimization with limited distribution information[J]. Optimization Methods and Software, 2013, 28(3): 640-667.
[18]
Kwon K, Cheong T. A minimax distribution-free procedure for a newsvendor problem with free shipping[J]. European Journal of Operational Research, 2014, 232(1): 234-240.
[19]
Sleator D, Tarjan R. Amortized efficiency of list update and paging rules[J]. Communications of the ACM, 1985, 28(2): 202-208.
[20]
Karlin A R, Manasse M S, Rudolph L, et al. Competitive snoopy caching[J]. Algorithmica, 1988, 3(1): 79-119.
[21]
Borodin A, El-Yaniv R. Online computation and competitive analysis[M]. Cambridge:Cambridge University Press, 1998.
[22]
Wagner M R. Fully distribution-free profit maximization: the inventory management case[J]. Mathematics of Operations Research, 2010, 35 (4): 728-741.
[23]
Wagner M R. Online lot-sizing problems with ordering, holding and shortage costs[J]. Operations Research Letters, 2011, 39(2): 144-149.
Ball M, Queyranne M. Toward robust revenue management: Competitive analysis of online booking[J]. Operations Research, 2009, 57 (4): 950-963.
[27]
Van den Heuvel W, Wagelmans A P M. Worst case analysis for a general class of on-line lot-sizing heuristics[J]. Operations Research, 2010, 58 (1): 59-67.
[28]
Cesa-Bianchi N, Lugosi G. Prediction, learning, and games[M]. Cambridge:Cambridge University Press, 2006.
[29]
Vovk V. Competitive on-line statistics[J]. International Statistical Review, 2001, 69(2): 213-248.
[30]
Kalnishkan Y, Vyugin M V. The weak aggregating algorithm and weak mixability[J]. The Journal of Computer and System Sciences, 2008, 74(8): 1228-1244.
[31]
Levina T, Levin Y, McGill J, et al. Weak aggregating algorithm for the distribution-free perishable inventory problem[J]. Operations Research Letters, 2010, 38(6): 516-521.