全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparing the Mini-BESTest with the Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

DOI: 10.1155/2012/375419

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with PD of varying severity. We evaluated (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity/specificity of separating people with or without postural response deficits. Subjects. Ninety-seven people with PD were tested for balance deficits using the Berg, Mini-BESTest, Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity classification. Setting. Clinical research facility at Oregon Health & Science University. Results. The Mini-BESTest is highly correlated with the Berg ( , ), but avoids the ceiling compression effect of the Berg for mild PD (skewness ?2.30 Berg, ?0.93 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score ( Mini-BESTest versus Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC differential ). Conclusion. The Mini-BESTest is a promising tool for discerning balance deficits in patients with PD, most importantly those with more subtle deficits. 1. Introduction Postural instability and balance deficits are one of the most debilitating impairments associated with chronic neurological disease, such as Parkinson’s disease (PD) [1]. The most commonly used clinical test of balance severity in people with PD is the Berg Balance Scale (Berg) [2]. The Berg, originally designed for use in the frail elderly, is a 14-item test that focuses on a variety of self-initiated tasks related to everyday function such as sit-to-stand and functional reach forward. The Berg has excellent reliability and is somewhat correlated with severity of PD, as measured with the Unified Parkinson Rating Scale (UPDRS) [3, 4]. However, the Berg has limitations such as documented ceiling effects [5–7] and problems with underutilization and redundancy of categories due to the rating scale [8, 9]. These particular limitations are important considerations when evaluating patients with mild neurological deficits, who are easy to underidentify and therefore less likely to receive rehabilitation. Such documented limitations of the Berg have led many clinicians to do more than one validated balance assessment in order to identify deficits that may respond to treatment. Recently, a new and more comprehensive clinical balance test, the Balance Evaluation Systems Test (BESTest),

References

[1]  B. R. Bloem, Y. A. M. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, “Prospective assessment of falls in Parkinson's disease,” Journal of Neurology, vol. 248, no. 11, pp. 950–958, 2001.
[2]  K. O. Berg, S. L. Wood-Dauphinee, J. I. Williams, and B. Maki, “Measuring balance in the elderly: validation of an instrument,” Canadian Journal of Public Health, vol. 83, supplement 2, pp. S7–S11, 1992.
[3]  T. Steffen and M. Seney, “Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-Item Short-Form Health Survey, and the Unified Parkinson Disease Rating Scale in people with parkinsonism,” Physical Therapy, vol. 88, no. 6, pp. 733–746, 2008.
[4]  A. A. Qutubuddin, P. O. Pegg, D. X. Cifu, R. Brown, S. McNamee, and W. Carne, “Validating the Berg Balance Scale for patients with Parkinson's disease: a key to rehabilitation evaluation,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 4, pp. 789–792, 2005.
[5]  A. H. Newstead, M. R. Hinman, and J. A. Tomberlin, “Reliability of the Berg Balance Scale and balance master limits of stability tests for individuals with brain injury,” Journal of Neurologic Physical Therapy, vol. 29, no. 1, pp. 18–23, 2005.
[6]  R. A. Geiger, J. B. Allen, J. O'Keefe, and R. R. Hicks, “Balance and mobility following stroke: effects of physical therapy interventions with and without biofeedback/forceplate training,” Physical Therapy, vol. 81, no. 4, pp. 995–1005, 2001.
[7]  L. D. B. Thorbahn, R. A. Newton, and J. Chandler, “Use of the Berg balance test to predict falls in elderly persons,” Physical Therapy, vol. 76, no. 6, pp. 576–585, 1996.
[8]  D. L. Kornetti, S. L. Fritz, Y. P. Chiu, K. E. Light, and C. A. Velozo, “Rating scale analysis of the Berg balance scale,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 7, pp. 1128–1135, 2004.
[9]  F. Franchignoni, C. A. Velozo, A. A. Qutubuddin, D. X. Cifu, and W. Carne, “Use of the Berg Balance Scale in rehabilitation evaluation of patients with Parkinson's disease,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 11, pp. 2225–2226, 2005.
[10]  F. B. Horak, D. M. Wrisley, and J. Frank, “The balance evaluation systems test (BESTest) to differentiate balance deficits,” Physical Therapy, vol. 89, no. 5, pp. 484–498, 2009.
[11]  A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with parkinson disease who fall,” Physical Therapy, vol. 91, no. 1, pp. 102–113, 2011.
[12]  F. Franchignoni, F. Horak, M. Godi, A. Nardone, and A. Giordano, “Using psychometric techniques to improve the balance evaluation systems test: the mini-bestest,” Journal of Rehabilitation Medicine, vol. 42, no. 4, pp. 323–331, 2010.
[13]  A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Utility of the mini-BESTest, BESTest, and BESTest sections for balance assessments in individuals with Parkinson disease,” Journal of Neurologic Physical Therapy, vol. 35, no. 2, pp. 90–97, 2011.
[14]  K. Berg, S. Wood-Dauphinee, and J. I. Williams, “The balance scale: reliability assessment with elderly residents and patients with an acute stroke,” Scandinavian Journal of Rehabilitation Medicine, vol. 27, no. 1, pp. 27–36, 1995.
[15]  S. Fahn and R. Elton, Unified Parkinson's Disease Rating Scale, Macmillan Healthcare Information, Florham Park, NJ, USA, 1987.
[16]  M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, vol. 17, no. 5, pp. 427–442, 1967.
[17]  C. Ramaker, J. Marinus, A. M. Stiggelbout, and B. J. van Hilten, “Systematic evaluation of rating scales for impairment and disability in Parkinson's disease,” Movement Disorders, vol. 17, no. 5, pp. 867–876, 2002.
[18]  Stata Statistical Software, Release 11, StataCorp LP, College Station, Tex, USA, 2009.
[19]  A.C. Davison and D. Hinkley, Bootstrap Methods and Their Application, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, UK, 8th edition, 2006.
[20]  J. Neter, W. Wasserman, and M. Kunter, Applied Linear Statistical Models, Irwin, 1990.
[21]  E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach,” Biometrics, vol. 44, no. 3, pp. 837–845, 1988.
[22]  L. Blum and N. Korner-Bitensky, “Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review,” Physical Therapy, vol. 88, no. 5, pp. 559–566, 2008.
[23]  K. J. Brusse, S. Zimdars, K. R. Zalewski, and T. M. Steffen, “Testing functional performance in people with Parkinson disease,” Physical Therapy, vol. 85, no. 2, pp. 134–141, 2005.
[24]  H. Tanji, A. L. Gruber-Baldini, K. E. Anderson et al., “A comparative study of physical performance measures in Parkinson's disease,” Movement Disorders, vol. 23, no. 13, pp. 1897–1905, 2008.
[25]  J. V. Jacobs, F. B. Horak, V. K. Tran, and J. G. Nutt, “Multiple balance tests improve the assessment of postural stability in subjects with Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 3, pp. 322–326, 2006.
[26]  L. E. Dibble and M. Lange, “Predicting falls in individuals with Parkinson disease: a reconsideration of clinical balance measures,” Journal of Neurologic Physical Therapy, vol. 30, no. 2, pp. 60–67, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133