Parkinson's disease (PD) is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs), but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models. 1. Introduction Parkinson’s disease (PD) is one of the most common chronic neurodegenerative disorders. It is characterized by a variety of motor (bradykinesia, rigidity, tremor, and postural instability) and nonmotor (autonomic disturbances and psychosis) symptoms. Although it can be diagnosed accurately, no therapeutic strategies can cure or completely block the progression of PD. Pathologically, PD is characterized by the severe loss of dopaminergic (DAergic) neurons in the pars-compacta nigra and the presence of proteinaceous α-synuclein inclusions, called Lewy bodies (LBs), which are present in neurons of the central nervous system (specific cortical regions, brain stem, and spinal cord), peripheral autonomic nervous system, enteric nervous system (ENS), and cutaneous nerves [1–3]. Similar to other neurodegenerative diseases, such as Alzheimer’s disease, age is the major risk factor for PD although 10% of the people with the disease are younger than 45. Although PD is regarded as a sporadic disorder, remarkably few environmental causes or triggers have been identified [4–6]. Pesticides and herbicides are the most likely candidates for environmental agents associated with the pathogenesis of PD. On the other hand, PD characteristics are seen in a number of familial motor disorders caused by different genetic factors. Animal models of neurodegenerative diseases, including PD, have in general been quite instructive in understanding their pathogenesis. Ideally, animal models of PD, whether induced by environmental risk factors (neurotoxins) or genetic manipulations, should faithfully reproduce the clinical manifestations (behavioral
References
[1]
H. Braak, R. A. I. de Vos, J. Bohl, and K. Del Tredici, “Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology,” Neuroscience Letters, vol. 396, no. 1, pp. 67–72, 2006.
[2]
M. Ikemura, Y. Saito, R. Sengoku et al., “Lewy body pathology involves cutaneous nerves,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 10, pp. 945–953, 2008.
[3]
T. Lebouvier, T. Chaumette, S. Paillusson et al., “The second brain and Parkinson's disease,” European Journal of Neuroscience, vol. 30, no. 5, pp. 735–741, 2009.
[4]
C. M. Tanner, “Is the cause of Parkinson's disease environmental or hereditary? Evidence from twin studies,” Advances in neurology, vol. 91, pp. 133–142, 2003.
[5]
K. S. M. Taylor, C. E. Counsell, J. C. Gordon, and C. E. Harris, “Screening for undiagnosed parkinsonism among older people in general practice,” Age and Ageing, vol. 34, no. 5, pp. 501–504, 2005.
[6]
F. D. Dick, G. De Palma, A. Ahmadi et al., “Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study,” Occupational and Environmental Medicine, vol. 64, no. 10, pp. 666–672, 2007.
[7]
A. Ascherio, H. Chen, M. G. Weisskopf et al., “Pesticide exposure and risk for Parkinson's disease,” Annals of Neurology, vol. 60, no. 2, pp. 197–203, 2006.
[8]
H. B. Ferraz, P. H. F. Bertolucci, J. S. Pereira, J. G. C. Lima, and L. A. F. Andrade, “Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication,” Neurology, vol. 38, no. 4, pp. 550–553, 1988.
[9]
G. C. Davis, A. C. Williams, and S. P. Markey, “Chronic parkinsonism secondary to intravenous injection of meperidine analogues,” Psychiatry Research, vol. 1, no. 3, pp. 249–254, 1979.
[10]
J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, “Chronic parkinsonism in humans due to a product of meperidine-analog synthesis,” Science, vol. 219, no. 4587, pp. 979–980, 1983.
[11]
J. W. Langston, L. S. Forno, J. Tetrud, A. G. Reeves, J. A. Kaplan, and D. Karluk, “Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure,” Annals of Neurology, vol. 46, no. 4, pp. 598–605, 1999.
[12]
C. C. Chiueh, S. P. Markey, and R. S. Burns, “Neurochemical and behavioral effects of 1-methyl-4-phenyl-1,2,3-tetrahydropyridine (MPTP) in rat, guinea pig, and monkey,” Psychopharmacology Bulletin, vol. 20, no. 3, pp. 548–553, 1984.
[13]
J. W. Langston, L. S. Forno, C. S. Rebert, and I. Irwin, “Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) in the squirrel monkey,” Brain Research, vol. 292, no. 2, pp. 390–394, 1984.
[14]
S. P. Markey, J. N. Johannessen, C. C. Chiueh, R. S. Burns, and M. A. Herkenham, “Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism,” Nature, vol. 311, no. 5985, pp. 464–466, 1984.
[15]
I. J. Kopin and S. P. Markey, “MPTP toxicity: implications for research in Parkinson's disease,” Annual Review of Neuroscience, vol. 11, pp. 81–96, 1988.
[16]
J. W. Langston and I. Irwin, “MPTP: current concepts and controversies,” Clinical Neuropharmacology, vol. 9, no. 6, pp. 485–507, 1986.
[17]
A. Giovanni, B. A. Sieber, R. E. Heikkila, and P. K. Sonsalla, “Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine. Part 1: systemic administration,” Journal of Pharmacology and Experimental Therapeutics, vol. 270, no. 3, pp. 1000–1007, 1994.
[18]
A. Giovanni, P. K. Sonsalla, and R. E. Heikkila, “Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine. Part 2: central administration of 1- methyl-4-phenylpyridinium,” Journal of Pharmacology and Experimental Therapeutics, vol. 270, no. 3, pp. 1008–1014, 1994.
[19]
S. Przedborski, V. Jackson-Lewis, A. B. Naini et al., “The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety,” Journal of Neurochemistry, vol. 76, no. 5, pp. 1265–1274, 2001.
[20]
N. Schmidt and B. Ferger, “Neurochemical findings in the MPTP model of Parkinson's disease,” Journal of Neural Transmission, vol. 108, no. 11, pp. 1263–1282, 2001.
[21]
G. Anderson, A. R. Noorian, G. Taylor et al., “Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson's disease,” Experimental Neurology, vol. 207, no. 1, pp. 4–12, 2007.
[22]
G. Natale, O. Kastsiushenka, F. Fulceri, S. Ruggieri, A. Paparelli, and F. Fornai, “MPTP-induced parkinsonism extends to a subclass of TH-positive neurons in the gut,” Brain Research, vol. 1355, pp. 195–206, 2010.
[23]
U. Ungerstedt, “Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system,” Acta Physiologica Scandinavica, Supplement, vol. 367, pp. 69–93, 1971.
[24]
D. A. Perese, J. Ulman, J. Viola, S. E. Ewing, and K. S. Bankiewicz, “A 6-hydroxydopamine-induced selective parkinsonian rat model,” Brain Research, vol. 494, no. 2, pp. 285–293, 1989.
[25]
S. Przedborski, M. Levivier, H. Jiang et al., “Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine,” Neuroscience, vol. 67, no. 3, pp. 631–647, 1995.
[26]
K. Berger, S. Przedborski, and J. L. Cadet, “Retrograde degeneration of nigrostriatal neurons induced by intrastriatal 6-hydroxydopamine injection in rats,” Brain Research Bulletin, vol. 26, no. 2, pp. 301–307, 1991.
[27]
H. Sauer and W. H. Oertel, “Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat,” Neuroscience, vol. 59, no. 2, pp. 401–415, 1994.
[28]
M. F. Beal, “Experimental models of Parkinson's disease,” Nature Reviews Neuroscience, vol. 2, no. 5, pp. 325–334, 2001.
[29]
R. Deumens, A. Blokland, and J. Prickaerts, “Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway,” Experimental Neurology, vol. 175, no. 2, pp. 303–317, 2002.
[30]
E. C. Hirsch, G. H?glinger, E. Rousselet et al., “Animal models of Parkinson's disease in rodents induced by toxins: an update,” Journal of Neural Transmission, Supplement, no. 65, pp. 89–100, 2003.
[31]
R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson's disease,” Nature Neuroscience, vol. 3, no. 12, pp. 1301–1306, 2000.
[32]
T. B. Sherer, J. H. Kim, R. Betarbet, and J. T. Greenamyre, “Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation,” Experimental Neurology, vol. 179, no. 1, pp. 9–16, 2003.
[33]
N. Lapointe, M. St-Hilaire, M. G. Martinoli et al., “Rotenone induces non-specific central nervous system and systemic toxicity,” The FASEB Journal, vol. 18, no. 6, pp. 717–719, 2004.
[34]
R. E. Drolet, J. R. Cannon, L. Montero, and J. T. Greenamyre, “Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology,” Neurobiology of Disease, vol. 36, no. 1, pp. 96–102, 2009.
[35]
D. Di Monte, M. S. Sandy, G. Ekstrom, and M. T. Smith, “Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity,” Biochemical and Biophysical Research Communications, vol. 137, no. 1, pp. 303–309, 1986.
[36]
A. I. Brooks, C. A. Chadwick, H. A. Gelbard, D. A. Cory-Slechta, and H. J. Federoff, “Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss,” Brain Research, vol. 823, no. 1-2, pp. 1–10, 1999.
[37]
A. B. Manning-Bog, A. L. McCormack, J. Li, V. N. Uversky, A. L. Fink, and D. A. Di Monte, “The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein,” Journal of Biological Chemistry, vol. 277, no. 3, pp. 1641–1644, 2002.
[38]
M. Khwaja, A. McCormack, J. M. McIntosh, D. A. Di Monte, and M. Quik, “Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to α6β2* nAChRs,” Journal of Neurochemistry, vol. 100, no. 1, pp. 180–190, 2007.
[39]
S. Wonnacott, S. Kaiser, A. Mogg, L. Soliakov, and I. W. Jones, “Presynaptic nicotinic receptors modulating dopamine release in the rat striatum,” European Journal of Pharmacology, vol. 393, no. 1–3, pp. 51–58, 2000.
[40]
S. E. McCallum, N. Parameswaran, T. Bordia, J. M. McIntosh, S. R. Grady, and M. Quik, “Decrease in α3*/α6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage,” Molecular Pharmacology, vol. 68, no. 3, pp. 737–746, 2005.
[41]
K. T. O'Leary, N. Parameswaran, L. C. Johnston, J. M. McIntosh, D. A. Di Monte, and M. Quik, “Paraquat exposure reduces nicotinic receptor-evoked dopamine release in monkey striatum,” Journal of Pharmacology and Experimental Therapeutics, vol. 327, no. 1, pp. 124–129, 2008.
[42]
M. Thiruchelvam, B. J. Brockel, E. K. Richfield, R. B. Baggs, and D. A. Cory-Slechta, “Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease?” Brain Research, vol. 873, no. 2, pp. 225–234, 2000.
[43]
M. Thiruchelvam, E. K. Richfield, R. B. Baggs, A. W. Tank, and D. A. Cory-Slechta, “The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease,” Journal of Neuroscience, vol. 20, no. 24, pp. 9207–9214, 2000.
[44]
W. J. Nicklas, I. Vyas, and R. E. Heikkila, “Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine,” Life Sciences, vol. 36, no. 26, pp. 2503–2508, 1985.
[45]
S. Przedborski and M. Vila, “The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease,” Annals of the New York Academy of Sciences, vol. 991, pp. 189–198, 2003.
[46]
R. A. Mayer, M. V. Kindt, and R. E. Heikkila, “Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylamine transport,” Journal of Neurochemistry, vol. 47, no. 4, pp. 1073–1079, 1986.
[47]
E. Bezard, C. E. Gross, M. C. Fournier, S. Dovero, B. Bloch, and M. Jaber, “Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter,” Experimental Neurology, vol. 155, no. 2, pp. 268–273, 1999.
[48]
R. R. Ramsay and T. P. Singer, “Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria,” Journal of Biological Chemistry, vol. 261, no. 17, pp. 7585–7587, 1986.
[49]
M. Del Zompo, M. P. Piccardi, S. Ruiu, M. Quartu, G. L. Gessa, and A. Vaccari, “Selective MPP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP neurotoxicity,” British Journal of Pharmacology, vol. 109, no. 2, pp. 411–414, 1993.
[50]
L. K. Klaidman, J. D. Adams Jr., A. C. Leung, S. S. Kim, and E. Cadenas, “Redox cycling of MPP: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase,” Free Radical Biology and Medicine, vol. 15, no. 2, pp. 169–179, 1993.
[51]
S. Hunot, F. Boissière, B. Faucheux et al., “Nitric oxide synthase and neuronal vulnerability in Parkinson's disease,” Neuroscience, vol. 72, no. 2, pp. 355–363, 1996.
[52]
C. Huerta, E. Sánchez-Ferrero, E. Coto et al., “No association between Parkinson's disease and three polymorphisms in the eNOS, nNOS, and iNOS genes,” Neuroscience Letters, vol. 413, no. 3, pp. 202–205, 2007.
[53]
G. T. Liberatore, V. Jackson-Lewis, S. Vukosavic et al., “Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease,” Nature Medicine, vol. 5, no. 12, pp. 1403–1409, 1999.
[54]
T. Dehmer, J. Lindenau, S. Haid, J. Dichgans, and J. B. Schulz, “Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo,” Journal of Neurochemistry, vol. 74, no. 5, pp. 2213–2216, 2000.
[55]
T. Breidert, J. Callebert, M. T. Heneka, G. Landreth, J. M. Launay, and E. C. Hirsch, “Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson's disease,” Journal of Neurochemistry, vol. 82, no. 3, pp. 615–624, 2002.
[56]
DU. C. Wu, V. Jackson-Lewis, M. Vila et al., “Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease,” Journal of Neuroscience, vol. 22, no. 5, pp. 1763–1771, 2002.
[57]
C. Barcia, A. Sánchez Bahillo, E. Fernández-Villalba et al., “Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure,” Glia, vol. 46, no. 4, pp. 402–409, 2004.
[58]
A. Schober, “Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP,” Cell and Tissue Research, vol. 318, no. 1, pp. 215–224, 2004.
[59]
J. Bové, D. Prou, C. Perier, and S. Przedborski, “Toxin-induced models of Parkinson's disease,” NeuroRx, vol. 2, no. 3, pp. 484–494, 2005.
[60]
V. N. Uversky, “Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration,” Cell and Tissue Research, vol. 318, no. 1, pp. 225–241, 2004.
[61]
M. J. Casarejos, J. Menéndez, R. M. Solano, J. A. Rodríguez-Navarro, J. García De Yébenes, and M. A. Mena, “Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline,” Journal of Neurochemistry, vol. 97, no. 4, pp. 934–946, 2006.
[62]
H. M. Gao, B. Liu, and J. S. Hong, “Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons,” Journal of Neuroscience, vol. 23, no. 15, pp. 6181–6187, 2003.
[63]
K. Shimizu, K. Matsubara, K. Ohtaki, S. Fujimaru, O. Saito, and H. Shiono, “Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats,” Brain Research, vol. 976, no. 2, pp. 243–252, 2003.
[64]
W. L. Yang and A. Y. Sun, “Paraquat-induced free radical reaction in mouse brain microsomes,” Neurochemical Research, vol. 23, no. 1, pp. 47–53, 1998.
[65]
A. L. McCormack and D. A. Di Monte, “Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration,” Journal of Neurochemistry, vol. 85, no. 1, pp. 82–86, 2003.
[66]
J. Zhang, V. A. Fitsanakis, G. Gu et al., “Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction,” Journal of Neurochemistry, vol. 84, no. 2, pp. 336–346, 2003.
[67]
T. Gasser, “Molecular pathogenesis of Parkinson disease: insights from genetic studies,” Expert Reviews in Molecular Medicine, vol. 11, p. e22, 2009.
[68]
A. J. Lees, J. Hardy, and T. Revesz, “Parkinson's disease,” The Lancet, vol. 373, no. 9680, pp. 2055–2066, 2009.
[69]
R. Krüger, W. Kuhn, T. Müller et al., “Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease,” Nature Genetics, vol. 18, no. 2, pp. 106–108, 1998.
[70]
M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997.
[71]
A. B. Singleton, M. Farrer, J. Johnson et al., “α-Synuclein locus triplication causes Parkinson's disease,” Science, vol. 302, no. 5646, p. 841, 2003.
[72]
A. B. Singleton, “Altered α-synuclein homeostasis causing Parkinson's disease: the potential roles of dardarin,” Trends in Neurosciences, vol. 28, no. 8, pp. 416–421, 2005.
[73]
C. Holzmann, R. Krüger, A. M. M. Vieira Saecker et al., “Polymorphisms of the α-synuclein promoter: expression analyses and association studies in Parkinson's disease,” Journal of Neural Transmission, vol. 110, no. 1, pp. 67–76, 2003.
[74]
P. Pals, S. Lincoln, J. Manning et al., “α-Synuclein promoter confers susceptibility to Parkinson's disease,” Annals of Neurology, vol. 56, no. 4, pp. 591–595, 2004.
[75]
S. Winkler, J. Hagenah, S. Lincoln et al., “α-synuclein and Parkinson disease susceptibility,” Neurology, vol. 69, no. 18, pp. 1745–1750, 2007.
[76]
M. R. Cookson, “The biochemistry of Parkinson's disease,” Annual Review of Biochemistry, vol. 74, pp. 29–52, 2005.
[77]
V. M. Y. Lee and J. Q. Trojanowski, “Mechanisms of Parkinson's disease linked to pathological α-Synuclein: new targets for drug discovery,” Neuron, vol. 52, no. 1, pp. 33–38, 2006.
[78]
M. B. Feany and W. W. Bender, “A Drosophila model of Parkinson's disease,” Nature, vol. 404, no. 6776, pp. 394–398, 2000.
[79]
M. Lakso, S. Vartiainen, A. M. Moilanen et al., “Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein,” Journal of Neurochemistry, vol. 86, no. 1, pp. 165–172, 2003.
[80]
T. Kuwahara, A. Koyama, K. Gengyo-Ando et al., “Familial Parkinson mutant α-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans,” Journal of Biological Chemistry, vol. 281, no. 1, pp. 334–340, 2006.
[81]
P. O. Fernagut and M. F. Chesselet, “Alpha-synuclein and transgenic mouse models,” Neurobiology of Disease, vol. 17, no. 2, pp. 123–130, 2004.
[82]
S. M. Fleming and M. F. Chesselet, “Behavioral phenotypes and pharmacology in genetic mouse models of Parkinsonism,” Behavioural Pharmacology, vol. 17, no. 5-6, pp. 383–391, 2006.
[83]
M. F. Chesselet, “In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's disease?” Experimental Neurology, vol. 209, no. 1, pp. 22–27, 2008.
[84]
E. K. Richfield, M. J. Thiruchelvam, D. A. Cory-Slechta et al., “Behavioral and neurochemical effects of wild-type and mutated human α-synuclein in transgenic mice,” Experimental Neurology, vol. 175, no. 1, pp. 35–48, 2002.
[85]
M. J. Thiruchelvam, J. M. Powers, D. A. Cory-Slechta, and E. K. Richfield, “Risk factors for dopaminergic neuron loss in human α-synuclein transgenic mice,” European Journal of Neuroscience, vol. 19, no. 4, pp. 845–854, 2004.
[86]
E. Masliah, E. Rockenstein, I. Veinbergs et al., “Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders,” Science, vol. 287, no. 5456, pp. 1265–1269, 2000.
[87]
P. J. Kahle, M. Neumann, L. Ozmen et al., “Selective insolubility of α-synuclein in human lewy body diseases is recapitulated in a transgenic mouse model,” American Journal of Pathology, vol. 159, no. 6, pp. 2215–2225, 2001.
[88]
E. Rockenstein, M. Mallory, M. Hashimoto et al., “Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters,” Journal of Neuroscience Research, vol. 68, no. 5, pp. 568–578, 2002.
[89]
D. D. Song, C. W. Shults, A. Sisk, E. Rockenstein, and E. Masliah, “Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP,” Experimental Neurology, vol. 186, no. 2, pp. 158–172, 2004.
[90]
B. I. Giasson, J. E. Duda, S. M. Quinn, B. Zhang, J. Q. Trojanowski, and V. M. Y. Lee, “Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein,” Neuron, vol. 34, no. 4, pp. 521–533, 2002.
[91]
M. K. Lee, W. Stirling, Y. Xu et al., “Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8968–8973, 2002.
[92]
D. Kirik, C. Rosenblad, C. Burger et al., “Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system,” Journal of Neuroscience, vol. 22, no. 7, pp. 2780–2791, 2002.
[93]
C. Lo Bianco, J. L. Ridet, B. L. Schneider, N. Déglon, and P. Aebischer, “α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10813–10818, 2002.
[94]
R. L. Klein, M. A. King, M. E. Hamby, and E. M. Meyer, “Dopaminergic cell loss induced by human A30P α-synuclein gene transfer to the rat substantia nigra,” Human Gene Therapy, vol. 13, no. 5, pp. 605–612, 2002.
[95]
E. Lauwers, Z. Debyser, J. Van Dorpe, B. De Strooper, B. Nuttin, and V. Baekelandt, “Neuropathology and neurodegeneration in rodent brain induced by lentiviral vector-mediated overexpression of α-synuclein,” Brain Pathology, vol. 13, no. 3, pp. 364–372, 2003.
[96]
D. Kirik, L. E. Annett, C. Burger, N. Muzyczka, R. J. Mandel, and A. Bj?rklund, “Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: a new primate model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2884–2889, 2003.
[97]
A. Abeliovich, Y. Schmitz, I. Fari?as et al., “Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system,” Neuron, vol. 25, no. 1, pp. 239–252, 2000.
[98]
S. Chandra, F. Fornai, H. -B. Kwon et al., “Double-knockout mice for α- and β-synucleins: effect on synaptic functions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14966–14971, 2004.
[99]
D. E. Cabin, K. Shimazu, D. Murphy et al., “Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein,” Journal of Neuroscience, vol. 22, no. 20, pp. 8797–8807, 2002.
[100]
W. Dauer, N. Kholodilov, M. Vila et al., “Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14524–14529, 2002.
[101]
O. M. Schlüter, F. Fornai, M. G. Alessandrí et al., “Role of α-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice,” Neuroscience, vol. 118, no. 4, pp. 985–1002, 2003.
[102]
E. Leroy, R. Boyer, G. Auburger et al., “The ubiquitin pathway in Parkinson's disease,” Nature, vol. 395, no. 6701, pp. 451–452, 1998.
[103]
J. Lowe, H. McDermott, M. Landon, R. J. Mayer, and K. D. Wilkinson, “Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases,” Journal of Pathology, vol. 161, no. 2, pp. 153–160, 1990.
[104]
K. Saigoh, YU. L. Wang, J. G. Suh et al., “Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice,” Nature Genetics, vol. 23, no. 1, pp. 47–51, 1999.
[105]
R. Setsuie, YU. L. Wang, H. Mochizuki et al., “Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant,” Neurochemistry International, vol. 50, no. 1, pp. 119–129, 2007.
[106]
T. Yasuda, T. Nihira, Y.-R. Ren et al., “Effects of UCH-L1 on α-synuclein over-expression mouse model of Parkinson's disease,” Journal of Neurochemistry, vol. 108, no. 4, pp. 932–944, 2009.
[107]
S. Biskup, D. J. Moore, F. Celsi et al., “Localization of LRRK2 to membranous and vesicular structures in mammalian brain,” Annals of Neurology, vol. 60, no. 5, pp. 557–569, 2006.
[108]
D. G. Healy, M. Falchi, S. S. O'Sullivan et al., “Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study,” The Lancet Neurology, vol. 7, no. 7, pp. 583–590, 2008.
[109]
O. A. Ross, M. Toft, A. J. Whittle et al., “Lrrk2 and Lewy body disease,” Annals of Neurology, vol. 59, no. 2, pp. 388–393, 2006.
[110]
D. MacLeod, J. Dowman, R. Hammond, T. Leete, K. Inoue, and A. Abeliovich, “The familial Parkinsonism gene LRRK2 regulates neurite process morphology,” Neuron, vol. 52, no. 4, pp. 587–593, 2006.
[111]
S. B. Lee, W. Kim, S. Lee, and J. Chung, “Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila,” Biochemical and Biophysical Research Communications, vol. 358, no. 2, pp. 534–539, 2007.
[112]
Y. Imai, S. Gehrke, H. Q. Wang et al., “Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila,” EMBO Journal, vol. 27, no. 18, pp. 2432–2443, 2008.
[113]
Z. Liu, X. Wang, YI. Yu et al., “A Drosophila model for LRRK2-linked parkinsonism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2693–2698, 2008.
[114]
C. H. Ng, S. Z. S. Mok, C. Koh et al., “Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila,” Journal of Neuroscience, vol. 29, no. 36, pp. 11257–11262, 2009.
[115]
K. Venderova, G. Kabbach, E. Abdel-Messih et al., “Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease,” Human Molecular Genetics, vol. 18, no. 22, pp. 4390–4404, 2009.
[116]
S. Saha, M. D. Guillily, A. Ferree et al., “LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans,” Journal of Neuroscience, vol. 29, no. 29, pp. 9210–9218, 2009.
[117]
Y. Li, W. Liu, T. F. Oo et al., “Mutant LRRK2 BAC transgenic mice recapitulate cardinal features of Parkinson's disease,” Nature Neuroscience, vol. 12, no. 7, pp. 826–828, 2009.
[118]
X. Li, J. C. Patel, J. Wang et al., “Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S,” Journal of Neuroscience, vol. 30, no. 5, pp. 1788–1797, 2010.
[119]
X. Lin, L. Parisiadou, X. L. Gu et al., “Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein,” Neuron, vol. 64, no. 6, pp. 807–827, 2009.
[120]
E. Andres-Mateos, R. Mejias, M. Sasaki et al., “Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine),” Journal of Neuroscience, vol. 29, no. 50, pp. 15846–15850, 2009.
[121]
D. Wang, B. Tang, G. Zhao et al., “Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons,” Molecular Neurodegeneration, vol. 3, no. 1, article no. 3, 2008.
[122]
A. Sakaguchi-Nakashima, J. Y. Meir, Y. Jin, K. Matsumoto, and N. Hisamoto, “LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins,” Current Biology, vol. 17, no. 7, pp. 592–598, 2007.
[123]
C. B. Lücking, A. Dürr, V. Bonifati et al., “Association between early-onset Parkinson's disease and mutations in the parkin gene,” New England Journal of Medicine, vol. 342, no. 21, pp. 1560–1567, 2000.
[124]
W. Springer, T. Hoppe, E. Schmidt, and R. Baumeister, “A Caenorhabditis elegans Parkin mutant with altered solubility couples α-synuclein aggregation to proteotoxic stress,” Human Molecular Genetics, vol. 14, no. 22, pp. 3407–3423, 2005.
[125]
J. C. Greene, A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany, and L. J. Pallanck, “Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4078–4083, 2003.
[126]
A. J. Whitworth, D. A. Theodore, J. C. Greene, H. Bene?, P. D. Wes, and L. J. Pallanck, “Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 8024–8029, 2005.
[127]
J. M. Itier, P. Ibá?ez, M. A. Mena et al., “Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse,” Human Molecular Genetics, vol. 12, no. 18, pp. 2277–2291, 2003.
[128]
M. S. Goldberg, S. M. Fleming, J. J. Palacino et al., “Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons,” Journal of Biological Chemistry, vol. 278, no. 44, pp. 43628–43635, 2003.
[129]
R. Von Coelln, B. Thomas, J. M. Savitt et al., “Loss of locus coeruleus neurons and reduced startle in parkin null mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10744–10749, 2004.
[130]
F. A. Perez and R. D. Palmiter, “Parkin-deficient mice are not a robust model of parkinsonism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 2174–2179, 2005.
[131]
C. Wang, R. Lu, X. Ouyang et al., “Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities,” Journal of Neuroscience, vol. 27, no. 32, pp. 8563–8570, 2007.
[132]
T. K. Sang, H. Y. Chang, G. M. Lawless et al., “A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine,” Journal of Neuroscience, vol. 27, no. 5, pp. 981–992, 2007.
[133]
X. H. Lu, S. M. Fleming, B. Meurers et al., “Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase k-resistant α-synuclein,” Journal of Neuroscience, vol. 29, no. 7, pp. 1962–1976, 2009.
[134]
L. Silvestri, V. Caputo, E. Bellacchio et al., “Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism,” Human Molecular Genetics, vol. 14, no. 22, pp. 3477–3492, 2005.
[135]
J. Park, S. B. Lee, S. Lee et al., “Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin,” Nature, vol. 441, no. 7097, pp. 1157–1161, 2006.
[136]
I. E. Clark, M. W. Dodson, C. Jiang et al., “Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin,” Nature, vol. 441, no. 7097, pp. 1162–1166, 2006.
[137]
T. Kitada, A. Pisani, D. R. Porter et al., “Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11441–11446, 2007.
[138]
C. A. Gautier, T. Kitada, and J. Shen, “Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11364–11369, 2008.
[139]
S. Gispert, F. Ricciardi, A. Kurz et al., “Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration,” PLoS One, vol. 4, no. 6, Article ID e5777, 2009.
[140]
LI. Zhang, M. Shimoji, B. Thomas et al., “Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis,” Human Molecular Genetics, vol. 14, no. 14, pp. 2063–2073, 2005.
[141]
A. Mitsumoto, Y. Nakagawa, A. Takeuchi, K. Okawa, A. Iwamatsu, and Y. Takanezawa, “Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat,” Free Radical Research, vol. 35, no. 3, pp. 301–310, 2001.
[142]
T. Yokota, K. Sugawara, K. Ito, R. Takahashi, H. Ariga, and H. Mizusawa, “Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition,” Biochemical and Biophysical Research Communications, vol. 312, no. 4, pp. 1342–1348, 2003.
[143]
C. Martinat, S. Shendelman, A. Jonason et al., “Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: An ES- derived cell model of primary Parkinsonism,” PLoS Biology, vol. 2, no. 11, article e327, 2004.
[144]
M. Meulener, A. J. Whitworth, C. E. Armstrong-Gold et al., “Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease,” Current Biology, vol. 15, no. 17, pp. 1572–1577, 2005.
[145]
F. M. Menzies, S. C. Yenisetti, and K. T. Min, “Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress,” Current Biology, vol. 15, no. 17, pp. 1578–1582, 2005.
[146]
J. Park, S. Y. Kim, G. H. Cha, S. B. Lee, S. Kim, and J. Chung, “Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction,” Gene, vol. 361, no. 1-2, pp. 133–139, 2005.
[147]
Y. Yang, S. Gehrke, M. E. Haque et al., “Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13670–13675, 2005.
[148]
E. Lavara-Culebras and N. Paricio, “Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits,” Gene, vol. 400, no. 1-2, pp. 158–165, 2007.
[149]
M. S. Goldberg, A. Pisani, M. Haburcak et al., “Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1,” Neuron, vol. 45, no. 4, pp. 489–496, 2005.
[150]
R. H. Kim, P. D. Smith, H. Aleyasin et al., “Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyrindine (MPTP) and oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 5215–5220, 2005.
[151]
E. Andres-Mateos, C. Perier, LI. Zhang et al., “DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14807–14812, 2007.
[152]
A. J. Whitworth, J. R. Lee, V. M.-W. Ho, R. Flick, R. Chowdhury, and G. A. McQuibban, “Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin,” DMM Disease Models and Mechanisms, vol. 1, no. 2-3, pp. 168–174, 2008.
[153]
J. Yun, J. H. Cao, M. W. Dodson et al., “Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the pink1/parkin pathway in vivo,” Journal of Neuroscience, vol. 28, no. 53, pp. 14500–14510, 2008.
[154]
J. M. Jones, P. Datta, S. M. Srinivasula et al., “Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice,” Nature, vol. 425, no. 6959, pp. 721–727, 2003.
[155]
L. M. Martins, A. Morrison, K. Klupsch et al., “Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice,” Molecular and Cellular Biology, vol. 24, no. 22, pp. 9848–9862, 2004.
[156]
W. D. Le, P. Xu, J. Jankovic et al., “Mutations in NR4A2 associated with familial Parkinson disease,” Nature Genetics, vol. 33, no. 1, pp. 85–89, 2003.
[157]
P. Sacchetti, T. R. Mitchell, J. G. Granneman, and M. J. Bannon, “Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism,” Journal of Neurochemistry, vol. 76, no. 5, pp. 1565–1572, 2001.
[158]
R. H. Zetterstr?m, L. Solomin, L. Jansson, B. J. Hoffer, L. Olson, and T. Perlmann, “Dopamine neuron agenesis in Nurr1-deficient mice,” Science, vol. 276, no. 5310, pp. 248–250, 1997.
[159]
C. Jiang, X. Wan, YI. He, T. Pan, J. Jankovic, and W. Le, “Age-dependent dopaminergic dysfunction in Nurr1 knockout mice,” Experimental Neurology, vol. 191, no. 1, pp. 154–162, 2005.
[160]
W. D. Le, O. M. Conneely, Y. He, J. Jankovic, and S. H. Appel, “Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury,” Journal of Neurochemistry, vol. 73, no. 5, pp. 2218–2221, 1999.
[161]
O. Goker-Alpan, R. Schiffmann, M. E. LaMarca, R. L. Nussbaum, A. McInerney-Leo, and E. Sidransky, “Parkinsonism among Gaucher disease carriers,” Journal of Medical Genetics, vol. 41, no. 12, pp. 937–940, 2004.
[162]
A. Ramirez, A. Heimbach, J. Gründemann et al., “Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase,” Nature Genetics, vol. 38, no. 10, pp. 1184–1191, 2006.