全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mitochondrial Dysfunction in Parkinson's Disease: Pathogenesis and Neuroprotection

DOI: 10.4061/2011/617472

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mitochondria are vitally important organelles involved in an array of functions. The most notable is their prominent role in energy metabolism, where they generate over 90% of our cellular energy in the form of ATP through oxidative phosphorylation. Mitochondria are involved in various other processes including the regulation of calcium homeostasis and stress response. Mitochondrial complex I impairment and subsequent oxidative stress have been identified as modulators of cell death in experimental models of Parkinson's disease (PD). Identification of specific genes which are involved in the rare familial forms of PD has further augmented the understanding and elevated the role mitochondrial dysfunction is thought to have in disease pathogenesis. This paper provides a review of the role mitochondria may play in idiopathic PD through the study of experimental models and how genetic mutations influence mitochondrial activity. Recent attempts at providing neuroprotection by targeting mitochondria are described and their progress assessed. 1. Introduction Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder, the second most common age-related neurodegenerative disease after Alzheimer’s disease [1]. It can be characterised clinically by rigidity, resting tremor, and postural instability [2]. These symptoms result from the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and a subsequent depletion of dopamine in the striatum [2]. The etiopathogenesis of PD is still not fully understood. 95% of cases are sporadic: a multifactorial, idiopathic disorder resulting from contributions of environmental and genetic susceptibility. The remaining 5% is the result of genetic mutations, of which there are several types, many only recently identified. However, old age remains the greatest risk factor, with 0.3% of the entire population affected, rising to more than 1% in the over 60?s and 4% in those over the age of 80 [3]. The two forms of PD share pathological, biochemical, and clinical features, with dysfunction of mitochondria and associated molecular pathways representing a bridge between the two forms of PD as well as the natural ageing process. Most mitochondrial dysfunction results from damage to complex I—or NADH (nicotinamide adenine dinucleotide phosphate):ubiquinone oxidoreductase—the first and most complex protein in the electron transport chain [4]. It is a large protein, consisting of 42 or 43 subunits [5] on the inner mitochondrial membrane, which forms part of the oxidative phosphorylation system [6].

References

[1]  W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003.
[2]  S. Fahn, “The spectrum of levodopa-induced dyskinesias,” Annals of Neurology, vol. 47, no. 4, supplement 1, pp. S2–S11, 2000.
[3]  L. M. de Lau and M. M. Breteler, “Epidemiology of Parkinson's disease,” Lancet Neurology, vol. 5, no. 6, pp. 525–535, 2006.
[4]  F. Schuler and J. E. Casida, “Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling,” Biochimica et Biophysica Acta—Bioenergetics, vol. 1506, no. 1, pp. 79–87, 2001.
[5]  J. M. Skehel, I. M. Fearnley, and J. E. Walker, “NADH:Ubiquinone oxidoreductase from bovine heart mitochondria: sequence of a novel 17.2-kDa subunit,” FEBS Letters, vol. 438, no. 3, pp. 301–305, 1998.
[6]  D. Blum, S. Torch, N. Lambeng et al., “Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease,” Progress in Neurobiology, vol. 65, no. 2, pp. 135–172, 2001.
[7]  C. Perier, J. Bové, D. C. Wu et al., “Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8161–8166, 2007.
[8]  A. Hartmann, J. D. Troadec, S. Hunot et al., “Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis,” Journal of Neuroscience, vol. 21, no. 7, pp. 2247–2255, 2001.
[9]  C. Perier, K. Tieu, C. Guégan et al., “Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19126–19131, 2005.
[10]  P. Li, D. Nijhawan, I. Budihardjo et al., “Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade,” Cell, vol. 91, no. 4, pp. 479–489, 1997.
[11]  M. Vila, V. Jackson-Lewis, S. Vukosavic et al., “Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2837–2842, 2001.
[12]  G. U. H?glinger, G. Carrard, P. P. Michel et al., “Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease,” Journal of Neurochemistry, vol. 86, no. 5, pp. 1297–1307, 2003.
[13]  A. Williams, “MPTP parkinsonism,” British Medical Journal, vol. 289, no. 6456, pp. 1401–1402, 1984.
[14]  J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, “Chronic parkinsonism in humans due to a product of meperidine-analog synthesis,” Science, vol. 219, no. 4587, pp. 979–980, 1983.
[15]  T. D. Buckman, R. Chang, M. S. Sutphin, and S. Eiduson, “Interaction of 1-methyl-4-phenylpyridinium ion with human platelets,” Biochemical and Biophysical Research Communications, vol. 151, no. 2, pp. 897–904, 1988.
[16]  J. Bové, D. Prou, C. Perier, and S. Przedborski, “Toxin-induced models of Parkinson's disease,” NeuroRx, vol. 2, no. 3, pp. 484–494, 2005.
[17]  A. H. V. Schapira, J. M. Cooper, D. Dexter, P. Jenner, J. B. Clark, and C. D. Marsden, “Mitochondrial complex I deficiency in Parkinson's disease,” Lancet, vol. 1, no. 8649, p. 1269, 1989.
[18]  P. M. Keeney, J. Xie, R. A. Capaldi, and J. P. Bennett, “Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled,” Journal of Neuroscience, vol. 26, no. 19, pp. 5256–5264, 2006.
[19]  W. D. Parker Jr., S. J. Boyson, and J. K. Parks, “Abnormalities of the electron transport chain in idiopathic Parkinson's disease,” Annals of Neurology, vol. 26, no. 6, pp. 719–723, 1989.
[20]  L. A. Bindoff, M. A. Birch-Machin, N. E. F. Cartlidge, W. D. Parker Jr., and D. M. Turnbull, “Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease,” Journal of the Neurological Sciences, vol. 104, no. 2, pp. 203–208, 1991.
[21]  D. T. Dexter, C. J. Carter, F. R. Wells et al., “Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease,” Journal of Neurochemistry, vol. 52, no. 2, pp. 381–389, 1989.
[22]  Z. I. Alam, S. E. Daniel, A. J. Lees, D. C. Marsden, P. Jenner, and B. Halliwell, “A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease,” Journal of Neurochemistry, vol. 69, no. 3, pp. 1326–1329, 1997.
[23]  E. Floor and M. G. Wetzel, “Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay,” Journal of Neurochemistry, vol. 70, no. 1, pp. 268–275, 1998.
[24]  J. Poirier, D. Dea, A. Baccichet, and C. Thiffault, “Superoxide dismutase expression in Parkinson's disease,” Annals of the New York Academy of Sciences, vol. 738, pp. 116–120, 1994.
[25]  S. Przedborski and V. Jackson-Lewis, “Mechanisms of MPTP toxicity,” Movement Disorders, vol. 13, no. 1, pp. 35–38, 1998.
[26]  K. Kitahama, R. M. Denney, T. Maeda, and M. Jouvet, “Distribution of type B monoamine oxidase immunoreactivity in the cat brain with reference to enzyme histochemistry,” Neuroscience, vol. 44, no. 1, pp. 185–204, 1991.
[27]  S. Przedborski and M. Vila, “MPTP: a review of its mechanisms of neurotoxicity,” Clinical Neuroscience Research, vol. 1, no. 6, pp. 407–418, 2001.
[28]  J. A. Javitch, R. J. D'Amato, S. M. Strittmatter, and S. H. Snyder, “Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 7, pp. 2173–2177, 1985.
[29]  R. A. Mayer, M. V. Kindt, and R. E. Heikkila, “Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylamine transport,” Journal of Neurochemistry, vol. 47, no. 4, pp. 1073–1079, 1986.
[30]  E. Bezard, C. E. Gross, M. C. Fournier, S. Dovero, B. Bloch, and M. Jaber, “Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter,” Experimental Neurology, vol. 155, no. 2, pp. 268–273, 1999.
[31]  S. Przedborski and M. Vila, “The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease,” Annals of the New York Academy of Sciences, vol. 991, pp. 189–198, 2003.
[32]  Y. Liu, A. Roghani, and R. H. Edwards, “Gene transfer of a reserpine-sensitive mechanism of resistance to N- methyl-4-phenylpyridinium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 19, pp. 9074–9078, 1992.
[33]  L. K. Klaidman, J. D. Adams Jr., A. C. Leung, S. S. Kim, and E. Cadenas, “Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase,” Free Radical Biology and Medicine, vol. 15, no. 2, pp. 169–179, 1993.
[34]  R. R. Ramsay and T. P. Singer, “Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria,” Journal of Biological Chemistry, vol. 261, no. 17, pp. 7585–7587, 1986.
[35]  Y. Mizuno, T. Saitoh, and N. Sone, “Inhibition of mitochondrial alpha-ketoglutarate dehydrogenase by 1-methyl-4-phenylpyridinium ion,” Biochemical and Biophysical Research Communications, vol. 143, no. 3, pp. 971–976, 1987.
[36]  R. R. Ramsay, M. J. Krueger, S. K. Youngster, M. R. Gluck, J. E. Casida, and T. P. Singer, “Interaction of 1-methyl-4-phenylpyridinium ion (MPP) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase,” Journal of Neurochemistry, vol. 56, no. 4, pp. 1184–1190, 1991.
[37]  S. Przedborski, K. Tieu, C. Perier, and M. Vila, “MPTP as a mitochondrial neurotoxic model of Parkinson's disease,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 4, pp. 375–379, 2004.
[38]  P. Chan, L. E. DeLanney, I. Irwin, J. W. Langston, and D. Di Monte, “Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain,” Journal of Neurochemistry, vol. 57, no. 1, pp. 348–351, 1991.
[39]  E. Fahre, J. Monserrat, A. Herrero, G. Barja, and M. L. Leret, “Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum,” Journal of Physiology and Biochemistry, vol. 55, no. 4, pp. 325–332, 1999.
[40]  G. P. Davey and J. B. Clark, “Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria,” Journal of Neurochemistry, vol. 66, no. 4, pp. 1617–1624, 1996.
[41]  W. S. Choi, S. E. Kruse, R. D. Palmiter, and Z. Xia, “Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15136–15141, 2008.
[42]  K. Tieu, C. Perier, C. Caspersen et al., “D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 892–901, 2003.
[43]  M. F. Beal, Rascol, Marek et al., “Bioenergetic approaches for neuroprotection in Parkinson's disease,” Annals of Neurology, vol. 53, no. 3, pp. S39–S48, 2003.
[44]  G. T. Liberatore, V. Jackson-Lewis, S. Vukosavic et al., “Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease,” Nature Medicine, vol. 5, no. 12, pp. 1403–1409, 1999.
[45]  S. Przedborski, V. Kostic, V. Jackson-Lewis et al., “Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity,” Journal of Neuroscience, vol. 12, no. 5, pp. 1658–1667, 1992.
[46]  L. A. Sturtz, K. Diekert, L. T. Jensen, R. Lill, and V. C. Culotta, “A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 38084–38089, 2001.
[47]  P. Jenner and C. W. Olanow, “Understanding cell death in Parkinson's disease,” Annals of Neurology, vol. 44, no. 3, pp. S72–S84, 1998.
[48]  B. Dehay, J. Bové, N. Rodríguez-Muela et al., “Pathogenic lysosomal depletion in Parkinson's disease,” Journal of Neuroscience, vol. 30, no. 37, pp. 12535–12544, 2010.
[49]  J. P. Luzio, P. R. Pryor, and N. A. Bright, “Lysosomes: fusion and function,” Nature Reviews Molecular Cell Biology, vol. 8, no. 8, pp. 622–632, 2007.
[50]  C. Malagelada, Z. H. Jin, V. Jackson-Lewis, S. Przedborski, and L. A. Greene, “Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease,” Journal of Neuroscience, vol. 30, no. 3, pp. 1166–1175, 2010.
[51]  A. Elbaz and C. Tranchant, “Epidemiologic studies of environmental exposures in Parkinson's disease,” Journal of the Neurological Sciences, vol. 262, no. 1-2, pp. 37–44, 2007.
[52]  J. M. Gorell, E. L. Peterson, B. A. Rybicki, and C. C. Johnson, “Multiple risk factors for Parkinson's disease,” Journal of the Neurological Sciences, vol. 217, no. 2, pp. 169–174, 2004.
[53]  T. B. Sherer, R. Betarbet, C. M. Testa et al., “Mechanism of toxicity in rotenone models of Parkinson's disease,” Journal of Neuroscience, vol. 23, no. 34, pp. 10756–10764, 2003.
[54]  D. J. Talpade, J. G. Greene, D. S. Higgins, and J. T. Greenamyre, “In vivo labeling of mitochondrial complex I (NADH:Ubiquinone oxidoreductase) in rat brain using [3H]dihydrorotenone,” Journal of Neurochemistry, vol. 75, no. 6, pp. 2611–2621, 2000.
[55]  T. B. Sherer, J. H. Kim, R. Betarbet, and J. T. Greenamyre, “Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation,” Experimental Neurology, vol. 179, no. 1, pp. 9–16, 2003.
[56]  R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson's disease,” Nature Neuroscience, vol. 3, no. 12, pp. 1301–1306, 2000.
[57]  T. M. Dawson and V. L. Dawson, “Molecular pathways of neurodegeneration in Parkinson's disease,” Science, vol. 302, no. 5646, pp. 819–822, 2003.
[58]  T. Pan, P. Rawal, Y. Wu, W. Xie, J. Jankovic, and W. Le, “Rapamycin protects against rotenone-induced apoptosis through autophagy induction,” Neuroscience, vol. 164, no. 2, pp. 541–551, 2009.
[59]  S. Senoh, C. R. Creveling, S. Udenfriend, and B. Witkop, “Chemical, enzymatic and metabolic studies on the mechanism of oxidation of dopamine,” Journal of the American Chemical Society, vol. 81, no. 23, pp. 6236–6240, 1959.
[60]  G. Cohen, “Oxy-radical toxicity in catecholamine neurons,” NeuroToxicology, vol. 5, no. 1, pp. 77–82, 1984.
[61]  S. M. Kulich and C. T. Chu, “Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson's disease,” Journal of Neurochemistry, vol. 77, no. 4, pp. 1058–1066, 2001.
[62]  S. M. Kulich, C. Horbinski, M. Patel, and C. T. Chu, “6-Hydroxydopamine induces mitochondrial ERK activation,” Free Radical Biology and Medicine, vol. 43, no. 3, pp. 372–383, 2007.
[63]  L. Margulis, “Symbiosis and evolution,” Scientific American, vol. 225, no. 2, pp. 48–57, 1971.
[64]  C. Richter, J. W. Park, and B. N. Ames, “Normal oxidative damage to mitochondrial and nuclear DNA is extensive,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 17, pp. 6465–6467, 1988.
[65]  A. W. Linnane, S. Marzuki, T. Ozawa, and M. Tanaka, “Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases,” Lancet, vol. 1, no. 8639, pp. 642–645, 1989.
[66]  Y. Michikawa, F. Mazzucchelli, N. Bresolin, G. Scarlato, and G. Attardi, “Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication,” Science, vol. 286, no. 5440, pp. 774–779, 1999.
[67]  D. K. Simon, M. T. Lin, L. Zheng et al., “Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease,” Neurobiology of Aging, vol. 25, no. 1, pp. 71–81, 2004.
[68]  R. Smigrodzki, J. Parks, and W. D. Parker, “High frequency of mitochondrial complex I mutations in Parkinson's disease and aging,” Neurobiology of Aging, vol. 25, no. 10, pp. 1273–1281, 2004.
[69]  C. Vives-Bauza, A. L. Andreu, G. Manfredi et al., “Sequence analysis of the entire mitochondrial genome in Parkinson's disease,” Biochemical and Biophysical Research Communications, vol. 290, no. 5, pp. 1593–1601, 2002.
[70]  M. Vermulst, J. H. Bielas, G. C. Kujoth et al., “Mitochondrial point mutations do not limit the natural lifespan of mice,” Nature Genetics, vol. 39, no. 4, pp. 540–543, 2007.
[71]  Y. Kraytsberg, E. Kudryavtseva, A. C. McKee, C. Geula, N. W. Kowall, and K. Khrapko, “Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons,” Nature Genetics, vol. 38, no. 5, pp. 518–520, 2006.
[72]  R. Banerjee, A. A. Starkov, M. F. Beal, and B. Thomas, “Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1792, no. 7, pp. 651–663, 2009.
[73]  Y. Wang, Y. Michikawa, C. Mallidis et al., “Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4022–4027, 2001.
[74]  K. Auré, G. Fayet, J. P. Leroy, E. Lacène, N. B. Romero, and A. Lombès, “Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation,” Brain, vol. 129, no. 5, pp. 1249–1259, 2006.
[75]  M. Gu, J. M. Cooper, J. W. Taanman, and A. H. V. Schapira, “Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease,” Annals of Neurology, vol. 44, no. 2, pp. 177–186, 1998.
[76]  J. P. Sheehan, R. H. Swerdlow, W. D. Parker, S. W. Miller, R. E. Davis, and J. B. Tuttle, “Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson's disease,” Journal of Neurochemistry, vol. 68, no. 3, pp. 1221–1233, 1997.
[77]  A. Bender, K. J. Krishnan, C. M. Morris et al., “High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease,” Nature Genetics, vol. 38, no. 5, pp. 515–517, 2006.
[78]  A. K. Reeve, K. J. Krishnan, and D. Turnbull, “Mitochondrial DNA mutations in disease, aging, and neurodegeneration,” Annals of the New York Academy of Sciences, vol. 1147, pp. 21–29, 2008.
[79]  E. Ruiz-Pesini, D. Mishmar, M. Brandon, V. Procaccio, and D. C. Wallace, “Effects of purifying and adaptive selection on regional variation in human mtDNA,” Science, vol. 303, no. 5655, pp. 223–226, 2004.
[80]  J. M. van der Walt, K. K. Nicodemus, E. R. Martin et al., “Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease,” American Journal of Human Genetics, vol. 72, no. 4, pp. 804–811, 2003.
[81]  A. Pyle, T. Foltynie, W. Tiangyou et al., “Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD,” Annals of Neurology, vol. 57, no. 4, pp. 564–567, 2005.
[82]  J. Autere, J. S. Moilanen, S. Finnil? et al., “Mitochondrial DNA polymorphisms as risk factors for Parkinson's disease and Parkinson's disease dementia,” Human Genetics, vol. 115, no. 1, pp. 29–35, 2004.
[83]  A. M. Lazzarini, R. H. Myers, T. R. Zimmerman Jr. et al., “A clinical genetic study of Parkinson's disease: evidence for dominant transmission,” Neurology, vol. 44, no. 3, pp. 499–506, 1994.
[84]  C. B. Lücking, A. Dürr, V. Bonifati et al., “Association between early-onset Parkinson's disease and mutations in the parkin gene,” New England Journal of Medicine, vol. 342, no. 21, pp. 1560–1567, 2000.
[85]  V. Bonifati, P. Rizzu, M. J. van Baren et al., “Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism,” Science, vol. 299, no. 5604, pp. 256–259, 2003.
[86]  E. M. Valente, P. M. Abou-Sleiman, V. Caputo et al., “Hereditary early-onset Parkinson's disease caused by mutations in PINK1,” Science, vol. 304, no. 5674, pp. 1158–1160, 2004.
[87]  K. Ueda, H. Fukushima, E. Masliah et al., “Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 11282–11286, 1993.
[88]  A. Abeliovich, Y. Schmitz, I. Fari?as et al., “Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system,” Neuron, vol. 25, no. 1, pp. 239–252, 2000.
[89]  M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997.
[90]  R. Krüger, W. Kuhn, T. Müller et al., “Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease,” Nature Genetics, vol. 18, no. 2, pp. 106–108, 1998.
[91]  J. J. Zarranz, J. Alegre, J. C. Gómez-Esteban et al., “The new mutation, E46K, of α-synuclein causes Parkinson and lewy body dementia,” Annals of Neurology, vol. 55, no. 2, pp. 164–173, 2004.
[92]  A. B. Singleton, M. Farrer, J. Johnson et al., “α-synuclein locus triplication causes Parkinson's disease,” Science, vol. 302, no. 5646, p. 841, 2003.
[93]  S. Büttner, A. Bitto, J. Ring et al., “Functional mitochondria are required for α-synuclein toxicity in aging yeast,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7554–7560, 2008.
[94]  L. J. Martin, Y. Pan, A. C. Price et al., “Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death,” Journal of Neuroscience, vol. 26, no. 1, pp. 41–50, 2006.
[95]  L. J. Hsu, Y. Sagara, A. Arroyo et al., “α-synuclein promotes mitochondrial deficit and oxidative stress,” American Journal of Pathology, vol. 157, no. 2, pp. 401–410, 2000.
[96]  M. Hashimoto, A. Takeda, L. J. Hsu, T. Takenouchi, and E. Masliah, “Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease,” Journal of Biological Chemistry, vol. 274, no. 41, pp. 28849–28852, 1999.
[97]  C. A. Da Costa, K. Ancolio, and F. Checler, “Wild-type but not Parkinson's disease-related Ala-53 → Thr mutant α-Synuclein protects neuronal cells from apoptotic stimuli,” Journal of Biological Chemistry, vol. 275, no. 31, pp. 24065–24069, 2000.
[98]  C. Alves Da Costa, E. Paitel, B. Vincent, and F. Checler, “α-synuclein lowers p53-dependent apoptotic response of neuronal cells: abolishment by 6-hydroxydopamine and implication for Parkinson's disease,” Journal of Biological Chemistry, vol. 277, no. 52, pp. 50980–50984, 2002.
[99]  Y. Tanaka, S. Engelender, S. Igarashi et al., “Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis,” Human Molecular Genetics, vol. 10, no. 9, pp. 919–926, 2001.
[100]  L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani, and H. K. Anandatheerthavarada, “Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain,” Journal of Biological Chemistry, vol. 283, no. 14, pp. 9089–9100, 2008.
[101]  M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and P. Ghafourifar, “Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 2015–2024, 2009.
[102]  M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and P. Ghafourifar, “Mitochondrial association of alpha-synuclein causes oxidative stress,” Cellular and Molecular Life Sciences, vol. 65, no. 7-8, pp. 1272–1284, 2008.
[103]  HE. J. Lee, S. Y. Shin, C. Choi, Y. H. Lee, and S. J. Lee, “Formation and removal of α-synuclein aggregates in cells exposed to mitochondrial inhibitors,” Journal of Biological Chemistry, vol. 277, no. 7, pp. 5411–5417, 2002.
[104]  W. Dauer, N. Kholodilov, M. Vila et al., “Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14524–14529, 2002.
[105]  P. Klivenyi, D. Siwek, G. Gardian et al., “Mice lacking alpha-synuclein are resistant to mitochondrial toxins,” Neurobiology of Disease, vol. 21, no. 3, pp. 541–548, 2006.
[106]  N. B. Cole, D. DiEuliis, P. Leo, D. C. Mitchell, and R. L. Nussbaum, “Mitochondrial translocation of α-synuclein is promoted by intracellular acidification,” Experimental Cell Research, vol. 314, no. 10, pp. 2076–2089, 2008.
[107]  T. Kitada, S. Asakawa, N. Hattori et al., “Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism,” Nature, vol. 392, no. 6676, pp. 605–608, 1998.
[108]  A. B. West and N. T. Maidment, “Genetics of parkin-linked disease,” Human Genetics, vol. 114, no. 4, pp. 327–336, 2004.
[109]  D. J. Moore, “Parkin: a multifaceted ubiquitin ligase,” Biochemical Society Transactions, vol. 34, no. 5, pp. 749–753, 2006.
[110]  H. Shimura, N. Hattori, S. I. Kubo et al., “Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase,” Nature Genetics, vol. 25, no. 3, pp. 302–305, 2000.
[111]  C. M. Pickart and D. Fushman, “Polyubiquitin chains: polymeric protein signals,” Current Opinion in Chemical Biology, vol. 8, no. 6, pp. 610–616, 2004.
[112]  F. Darios, O. Corti, C. B. Lücking et al., “Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death,” Human Molecular Genetics, vol. 12, no. 5, pp. 517–526, 2003.
[113]  A. K. Berger, G. P. Cortese, K. D. Amodeo, A. Weihofen, A. Letai, and M. J. LaVoie, “Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release,” Human Molecular Genetics, vol. 18, no. 22, pp. 4317–4328, 2009.
[114]  Y. Kuroda, T. Mitsui, M. Kunishige et al., “Parkin enhances mitochondrial biogenesis in proliferating cells,” Human Molecular Genetics, vol. 15, no. 6, pp. 883–895, 2006.
[115]  J. J. Palacino, D. Sagi, M. S. Goldberg et al., “Mitochondrial dysfunction and oxidative damage in parkin-deficient mice,” Journal of Biological Chemistry, vol. 279, no. 18, pp. 18614–18622, 2004.
[116]  M. S. Goldberg, S. M. Fleming, J. J. Palacino et al., “Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons,” Journal of Biological Chemistry, vol. 278, no. 44, pp. 43628–43635, 2003.
[117]  C. C. Stichel, X. R. Zhu, V. Bader, B. Linnartz, S. Schmidt, and H. Lübbert, “Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage,” Human Molecular Genetics, vol. 16, no. 20, pp. 2377–2393, 2007.
[118]  H. Mortiboys, K. J. Thomas, W. J. H. Koopman et al., “Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts,” Annals of Neurology, vol. 64, no. 5, pp. 555–565, 2008.
[119]  Y. Pesah, T. Pham, H. Burgess et al., “Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress,” Development, vol. 131, no. 9, pp. 2183–2194, 2004.
[120]  O. Rothfuss, H. Fischer, T. Hasegawa et al., “Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair,” Human Molecular Genetics, vol. 18, no. 20, pp. 3832–3850, 2009.
[121]  H. Deng, J. Jankovic, Y. Guo, W. Xie, and W. Le, “Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y,” Biochemical and Biophysical Research Communications, vol. 337, no. 4, pp. 1133–1138, 2005.
[122]  A. Petit, T. Kawarai, E. Paitel et al., “Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations,” Journal of Biological Chemistry, vol. 280, no. 40, pp. 34025–34032, 2005.
[123]  M. E. Haque, K. J. Thomas, C. D'Souza et al., “Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1716–1721, 2008.
[124]  S. Gandhi, M. M. K. Muqit, L. Stanyer et al., “PINK1 protein in normal human brain and Parkinson's disease,” Brain, vol. 129, no. 7, pp. 1720–1731, 2006.
[125]  C. Zhou, Y. Huang, Y. Shao et al., “The kinase domain of mitochondrial PINK1 faces the cytoplasm,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 33, pp. 12022–12027, 2008.
[126]  I. E. Clark, M. W. Dodson, C. Jiang et al., “Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin,” Nature, vol. 441, no. 7097, pp. 1162–1166, 2006.
[127]  J. Park, S. B. Lee, S. Lee et al., “Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin,” Nature, vol. 441, no. 7097, pp. 1157–1161, 2006.
[128]  Y. Yang, S. Gehrke, Y. Imai et al., “Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10793–10798, 2006.
[129]  N. Exner, B. Treske, D. Paquet et al., “Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin,” Journal of Neuroscience, vol. 27, no. 45, pp. 12413–12418, 2007.
[130]  S. J. Goldman Scott, R. Taylor, Y. Zhang, and S. Jin, “Autophagy and the degradation of mitochondria,” Mitochondrion, vol. 10, no. 4, pp. 309–315, 2010.
[131]  I. Kim, S. Rodriguez-Enriquez, and J. J. Lemasters, “Selective degradation of mitochondria by mitophagy,” Archives of Biochemistry and Biophysics, vol. 462, no. 2, pp. 245–253, 2007.
[132]  S. J. Chinta, J. K. Mallajosyula, A. Rane, and J. K. Andersen, “Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo,” Neuroscience Letters, vol. 486, no. 3, pp. 235–239, 2010.
[133]  Y. Chu, H. Dodiya, P. Aebischer, C. W. Olanow, and J. H. Kordower, “Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions,” Neurobiology of Disease, vol. 35, no. 3, pp. 385–398, 2009.
[134]  V. Cullen, M. Lindfors, J. Ng et al., “Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo,” Molecular Brain, vol. 2, no. 1, article 5, 2009.
[135]  D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008.
[136]  D. P. Narendra, S. M. Jin, A. Tanaka et al., “PINK1 is selectively stabilized on impaired mitochondria to activate Parkin,” PLoS Biology, vol. 8, no. 1, Article ID e1000298, 2010.
[137]  N. Matsuda, S. Sato, K. Shiba et al., “PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy,” Journal of Cell Biology, vol. 189, no. 2, pp. 211–221, 2010.
[138]  Q. Ruan, A. J. Harrington, K. A. Caldwell, G. A. Caldwell, and D. G. Standaert, “VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson's disease,” Neurobiology of Disease, vol. 37, no. 2, pp. 330–338, 2010.
[139]  C. Vives-Bauza, C. Zhou, Y. Huang et al., “PINK1-dependent recruitment of Parkin to mitochondria in mitophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 378–383, 2010.
[140]  R. K. Dagda, S. J. Cherra III, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13843–13855, 2009.
[141]  H. Deng, M. W. Dodson, H. Huang, and M. Guo, “The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14503–14508, 2008.
[142]  A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. McBride, A. J. Whitworth, and L. J. Pallanck, “The PINK1/Parkin pathway regulates mitochondrial morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1638–1643, 2008.
[143]  J. Park, G. Lee, and J. Chung, “The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process,” Biochemical and Biophysical Research Communications, vol. 378, no. 3, pp. 518–523, 2009.
[144]  C. A. Gautier, T. Kitada, and J. Shen, “Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11364–11369, 2008.
[145]  C. Piccoli, A. Sardanelli, R. Scrima et al., “Mitochondrial respiratory dysfunction in familiar Parkinsonism associated with PINK1 mutation,” Neurochemical Research, vol. 33, no. 12, pp. 2565–2574, 2008.
[146]  T. Taira, Y. Saito, T. Niki, S. M. M. Iguchi-Ariga, K. Takahashi, and H. Ariga, “DJ-1 has a role in antioxidative stress to prevent cell death,” EMBO Reports, vol. 5, no. 2, pp. 213–218, 2004.
[147]  N. Lev, D. Ickowicz, E. Melamed, and D. Offen, “Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection,” NeuroToxicology, vol. 29, no. 3, pp. 397–405, 2008.
[148]  M. Meulener, A. J. Whitworth, C. E. Armstrong-Gold et al., “Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease,” Current Biology, vol. 15, no. 17, pp. 1572–1577, 2005.
[149]  M. C. Meulener, K. Xu, L. Thompson, H. Ischiropoulos, and N. M. Bonini, “Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12517–12522, 2006.
[150]  R. H. Kim, P. D. Smith, H. Aleyasin et al., “Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyrindine (MPTP) and oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 5215–5220, 2005.
[151]  C. Martinat, S. Shendelman, A. Jonason et al., “Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES- derived cell model of primary Parkinsonism,” PLoS Biology, vol. 2, no. 11, 2004.
[152]  S. Shendelman, A. Jonason, C. Martinat, T. Leete, and A. Abeliovich, “DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation,” PLoS Biology, vol. 2, no. 11, article e362, 2004.
[153]  W. Yang, L. Chen, Y. Ding, X. Zhuang, and U. J. Kang, “Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice,” Human Molecular Genetics, vol. 16, no. 23, pp. 2900–2910, 2007.
[154]  J. Y. Im, K. W. Lee, E. Junn, and M. M. Mouradian, “DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex,” Neuroscience Research, vol. 67, no. 3, pp. 203–208, 2010.
[155]  T. Hayashi, C. Ishimori, K. Takahashi-Niki et al., “DJ-1 binds to mitochondrial complex I and maintains its activity,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 667–672, 2009.
[156]  E. Andres-Mateos, C. Perier, L. Zhang et al., “DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14807–14812, 2007.
[157]  A. Zimprich, S. Biskup, P. Leitner et al., “Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology,” Neuron, vol. 44, no. 4, pp. 601–607, 2004.
[158]  L. Bosgraaf and P. J. M. van Haastert, “Roc, a Ras/GTPase domain in complex proteins,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1643, no. 1–3, pp. 5–10, 2003.
[159]  A. B. West, D. J. Moore, S. Biskup et al., “Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 46, pp. 16842–16847, 2005.
[160]  C. J. Gloeckner, N. Kinkl, A. Schumacher et al., “The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity,” Human Molecular Genetics, vol. 15, no. 2, pp. 223–232, 2006.
[161]  E. Andres-Mateos, R. Mejias, M. Sasaki et al., “Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine),” Journal of Neuroscience, vol. 29, no. 50, pp. 15846–15850, 2009.
[162]  A. B. West, D. J. Moore, C. Choi et al., “Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity,” Human Molecular Genetics, vol. 16, no. 2, pp. 223–232, 2007.
[163]  X. Lin, L. Parisiadou, X. L. Gu et al., “Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein,” Neuron, vol. 64, no. 6, pp. 807–827, 2009.
[164]  I. Carballo-Carbajal, S. Weber-Endress, G. Rovelli et al., “Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway,” Cellular Signalling, vol. 22, no. 5, pp. 821–827, 2010.
[165]  Y. Tong, H. Yamaguchi, E. Giaime et al., “Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9879–9884, 2010.
[166]  H. Y. Heo, J. M. Park, C. H. Kim, B. S. Han, K. S. Kim, and W. Seol, “LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity,” Experimental Cell Research, vol. 316, no. 4, pp. 649–656, 2010.
[167]  J. Naderi, M. Somayajulu-Nitu, A. Mukerji et al., “Water-soluble formulation of Coenzyme Q10 inhibits Bax-induced destabilization of mitochondria in mammalian cells,” Apoptosis, vol. 11, no. 8, pp. 1359–1369, 2006.
[168]  L. Papucci, N. Schiavone, E. Witort et al., “Coenzyme Q10prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property,” Journal of Biological Chemistry, vol. 278, no. 30, pp. 28220–28228, 2003.
[169]  G. P. Littarru and L. Tiano, “Bioenergetic and antioxidant properties of coenzyme Q: recent developments,” Molecular Biotechnology, vol. 37, no. 1, pp. 31–37, 2007.
[170]  C. W. Shults, R. H. Haas, D. Passov, and M. F. Beal, “Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from Parkinsonian and nonparkinsonian subjects,” Annals of Neurology, vol. 42, no. 2, pp. 261–264, 1997.
[171]  A. K. Reeve, K. J. Krishnan, and D. Turnbull, “Mitochondrial DNA mutations in disease, aging, and neurodegeneration,” Annals of the New York Academy of Sciences, vol. 1147, pp. 21–29, 2008.
[172]  S. McCarthy, M. Somayajulu, M. Sikorska, H. Borowy-Borowski, and S. Pandey, “Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q,” Toxicology and Applied Pharmacology, vol. 201, no. 1, pp. 21–31, 2004.
[173]  Y. Moon, K. H. Lee, J. H. Park, D. Geum, and K. Kim, “Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q,” Journal of Neurochemistry, vol. 93, no. 5, pp. 1199–1208, 2005.
[174]  M. F. Beal, R. T. Matthews, A. Tieleman, and C. W. Shults, “Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice,” Brain Research, vol. 783, no. 1, pp. 109–114, 1998.
[175]  R. T. Matthews, L. Yang, S. Browne, M. Baik, and M. F. Beal, “Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8892–8897, 1998.
[176]  C. W. Shults, D. Oakes, K. Kieburtz et al., “Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline,” Archives of Neurology, vol. 59, no. 10, pp. 1541–1550, 2002.
[177]  A. Storch, W. H. Jost, P. Vieregge et al., “Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q10 in Parkinson disease,” Archives of Neurology, vol. 64, no. 7, pp. 938–944, 2007.
[178]  M. F. Beal, “Effects of Coenzyme Q10 (CoQ) in Parkinson Disease (QE3),” 2010, http://clinicaltrials.gov/ct2/show/NCT00740714?term=QE3+Parkinson%27s&rank=1.
[179]  P. Klivenyi, R. J. Ferrante, R. T. Matthews et al., “Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis,” Nature Medicine, vol. 5, no. 3, pp. 347–350, 1999.
[180]  G. J. Brewer and T. W. Wallimann, “Protective effect of the energy precursor creatine against toxicity of glutamate and β-amyloid in rat hippocampal neurons,” Journal of Neurochemistry, vol. 74, no. 5, pp. 1968–1978, 2000.
[181]  R. J. Ferrante, O. A. Andreassen, B. G. Jenkins et al., “Neuroprotective effects of creatine in a transgenic Mouse model of Huntington's disease,” Journal of Neuroscience, vol. 20, no. 12, pp. 4389–4397, 2000.
[182]  R. H. Andres, A. W. Huber, U. Schlattner et al., “Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue,” Neuroscience, vol. 133, no. 3, pp. 701–713, 2005.
[183]  R. T. Matthews, R. J. Ferrante, P. Klivenyi et al., “Creatine and cyclocreatine attenuate MPTP neurotoxicity,” Experimental Neurology, vol. 157, no. 1, pp. 142–149, 1999.
[184]  P. Klivenyi, G. Gardian, N. Y. Calingasan, L. Yang, and M. F. Beal, “Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) mouse model of Parkinson's disease,” Journal of Molecular Neuroscience, vol. 21, no. 3, pp. 191–198, 2003.
[185]  A. Bender, J. Beckers, I. Schneider et al., “Creatine improves health and survival of mice,” Neurobiology of Aging, vol. 29, no. 9, pp. 1404–1411, 2008.
[186]  A. Bender, W. Koch, M. Elstner et al., “Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial,” Neurology, vol. 67, no. 7, pp. 1262–1264, 2006.
[187]  J. Couzin, “Clinical research. Testing a novel strategy against Parkinson's disease,” Science, vol. 315, no. 5820, p. 1778, 2007.
[188]  L. Yang, N. Y. Calingasan, E. J. Wille et al., “Combination therapy with Coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's Diseases,” Journal of Neurochemistry, vol. 109, no. 5, pp. 1427–1439, 2009.
[189]  K. Zhao, G. Luo, G. M. Zhao, P. W. Schiller, and H. H. Szeto, “Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide,” Journal of Pharmacology and Experimental Therapeutics, vol. 304, no. 1, pp. 425–432, 2003.
[190]  K. Zhao, G. M. Zhao, D. Wu et al., “Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury,” Journal of Biological Chemistry, vol. 279, no. 33, pp. 34682–34690, 2004.
[191]  H. H. Szeto, “Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury,” Antioxidants and Redox Signaling, vol. 10, no. 3, pp. 601–619, 2008.
[192]  H. H. Szeto, “Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases,” Annals of the New York Academy of Sciences, vol. 1147, pp. 112–121, 2008.
[193]  K. Zhao, G. Luo, S. Giannelli, and H. H. Szeto, “Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines,” Biochemical Pharmacology, vol. 70, no. 12, pp. 1796–1806, 2005.
[194]  L. Yang, K. Zhao, N. Y. Calingasan, G. Luo, H. H. Szeto, and M. F. Beal, “Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity,” Antioxidants and Redox Signaling, vol. 11, no. 9, pp. 2095–2104, 2009.
[195]  R. J. Nijveldt, E. van Nood, D. E. C. van Hoorn, P. G. Boelens, K. van Norren, and P. A. M. van Leeuwen, “Flavonoids: a review of probable mechanisms of action and potential applications,” American Journal of Clinical Nutrition, vol. 74, no. 4, pp. 418–425, 2001.
[196]  S. Guo, E. Bezard, and B. Zhao, “Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway,” Free Radical Biology and Medicine, vol. 39, no. 5, pp. 682–695, 2005.
[197]  Y. Levites, O. Weinreb, G. Maor, M. B. H. Youdim, and S. Mandel, “Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration,” Journal of Neurochemistry, vol. 78, no. 5, pp. 1073–1082, 2001.
[198]  JI. Y. Choi, C. S. Park, D. J. Kim et al., “Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease in mice by tea phenolic epigallocatechin 3-gallate,” NeuroToxicology, vol. 23, no. 3, pp. 367–374, 2002.
[199]  G. Griffioen, H. Duhamel, N. van Damme et al., “A yeast-based model of α-synucleinopathy identifies compounds with therapeutic potential,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1762, no. 3, pp. 312–318, 2006.
[200]  D. K. Y. Chan, J. Woo, S. C. Ho et al., “Genetic and environmental risk factors for Parkinson's disease in a Chinese population,” Journal of Neurology Neurosurgery and Psychiatry, vol. 65, no. 5, pp. 781–784, 1998.
[201]  P. Lorenz, S. Roychowdhury, M. Engelmann, G. Wolf, and T. F. W. Horn, “Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells,” Nitric Oxide—Biology and Chemistry, vol. 9, no. 2, pp. 64–76, 2003.
[202]  J. Chao, M. S. Yu, Y. S. Ho, M. Wang, and R. C. C. Chang, “Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity,” Free Radical Biology and Medicine, vol. 45, no. 7, pp. 1019–1026, 2008.
[203]  S. A. Andrabi, M. G. Spina, P. Lorenz, U. Ebmeyer, G. Wolf, and T. F. W. Horn, “Oxyresveratrol (trans-2,3′,4,5′-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia,” Brain Research, vol. 1017, no. 1-2, pp. 98–107, 2004.
[204]  B. N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein, “Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 11, pp. 6858–6862, 1981.
[205]  J. W. Davis, A. Grandinetti, C. I. Waslien, G. W. Ross, L. R. White, and D. M. Morens, “Observations on serum uric acid levels and the risk of idiopathic Parkinson's disease,” American Journal of Epidemiology, vol. 144, no. 5, pp. 480–484, 1996.
[206]  T. Annanmaki, A. Muuronen, and K. Murros, “Low plasma uric acid level in Parkinson's disease,” Movement Disorders, vol. 22, no. 8, pp. 1133–1137, 2007.
[207]  M. G. Weisskopf, E. O'Reilly, H. Chen, M. A. Schwarzschild, and A. Ascherio, “Plasma urate and risk of Parkinson's disease,” American Journal of Epidemiology, vol. 166, no. 5, pp. 561–567, 2007.
[208]  A. Winquist, K. Steenland, and A. Shankar, “Higher serum uric acid associated with decreased Parkinson's disease prevalence in a large community-based survey,” Movement Disorders, vol. 25, no. 7, pp. 932–936, 2010.
[209]  R. F. Anderson and T. A. Harris, “Dopamine and uric acid act as antioxidants in the repair of DNA radicals: implications in Parkinson's disease,” Free Radical Research, vol. 37, no. 10, pp. 1131–1136, 2003.
[210]  W. Duan, B. Ladenheim, R. G. Cutler, I. I. Kruman III, J. L. Cadet, and M. P. Mattson, “Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease,” Journal of Neurochemistry, vol. 80, no. 1, pp. 101–110, 2002.
[211]  S. Guerreiro, A. Ponceau, D. Toulorge et al., “Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: potentiation by low-level depolarization,” Journal of Neurochemistry, vol. 109, no. 4, pp. 1118–1128, 2009.
[212]  T. A. Yacoubian and D. G. Standaert, “Targets for neuroprotection in Parkinson's disease,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1792, no. 7, pp. 676–687, 2009.
[213]  M. A. Schwarzschild, “Safety of Urate Elevation in Parkinson's Disease (SURE-PD),” November 2010, http://clinicaltrials.gov/ct2/show/NCT00833690?term=uric+acid&rank=6.
[214]  C. H. Lee, D. S. Hwang, H. G. Kim et al., “Protective effect of Cyperi Rhizoma against 6-hydroxydopamine-induced neuronal damage,” Journal of Medicinal Food, vol. 13, no. 3, pp. 564–571, 2010.
[215]  J. Lee, D. Son, P. Lee et al., “Protective effect of methanol extract of Uncaria rhynchophylla against excitotoxicity induced by N-methyl-D-aspartate in rat hippocampus,” Journal Pharmacological Sciences, vol. 92, no. 1, pp. 70–73, 2003.
[216]  B. Ma, C. F. Wu, J. Y. Yang, R. Wang, Y. Kano, and D. Yuan, “Three new alkaloids from the leaves of Uncaria rhynchophylla,” Helvetica Chimica Acta, vol. 92, no. 8, pp. 1575–1585, 2009.
[217]  J. S. Shim, H. G. Kim, M. S. Ju, J. G. Choi, S. Y. Jeong, and M. S. Oh, “Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease,” Journal of Ethnopharmacology, vol. 126, no. 2, pp. 361–365, 2009.
[218]  W. Koller, C. W. Olanow, R. Rodnitzky et al., “Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease,” New England Journal of Medicine, vol. 328, no. 3, pp. 176–183, 1993.
[219]  B. J. Snow, F. L. Rolfe, M. M. Lockhart et al., “A double-blind, placebo-controlled study to assess the mitochondria- targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease,” Movement Disorders, vol. 25, no. 11, pp. 1670–1674, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133