全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自锚式悬索桥静力随机分析与可靠度评估

, PP. 74-79

Keywords: 桥梁工程,自锚式悬索桥,拉丁超立方抽样,可靠度评估,人工神经网络,敏感性分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了对复杂结构进行随机分析及可靠度评估,提出一种复合算法。使用拉丁超立方抽样选取样本点拟合神经网络,基于显式化的神经网络解析式,采用皮尔森相关系数进行参数敏感性分析,利用一次二阶矩与重要抽样蒙特卡罗法进行可靠度评估,最后采用该算法对空间缆索自锚式悬索桥进行了静力随机分析及正常使用状态下的可靠度评估。计算结果表明:与大跨地锚式悬索桥静力受力行为不同,对于中等跨度自锚式悬索桥,主梁抗弯惯性矩是活载作用下主梁挠度最为敏感的因素;荷载的随机性是影响正常使用状态下结构可靠度的最敏感因素。

References

[1]  CHEN Wei-zhen,TANG Tao,XU Jun.Advances in Research of Structural System Reliability Assessment Theory of Cable-stayed Bridges[J].Bridge Construction,2006(4):67-70.
[2]  FRANGOPOL D M,IMAI K.Geometrically Nonlinear Finite Element Reliability Analysis of Structural Systems.II:Applications[J].Computers & Structures,2000,77(6):693-709.
[3]  陈铁冰,王书庆,石志源.计入结构几何非线性影响时斜拉桥可靠度分析[J].同济大学学报:自然科学版,2000,28(4):407-412.
[4]  CHEN Tie-bing,WANG Shu-qing,SHI Zhi-yuan.Reliability Analysis of Cable-stayed Bridges Considering Geometrical Non-linearity[J].Journal of Tongji University:Natural Science,2000,28(4):407-412.
[5]  李生勇.自锚式悬索桥结构可靠性研究[D].大连:大连理工大学,2006.
[6]  LI Sheng-yong.The Research on the Structural Reliability of Self-anchored Suspension Bridges[D].Dalian:Dalian University of Technology,2006.
[7]  佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报,1997,30 (4) :51-57.
[8]  TONG Xiao-li,ZHAO Guo-fan.The Response Surface Method in Conjunction with Geometric Method in Structural Reliability Analysis[J].China Civil Engineering Journal,1997,30(4):51-57.
[9]  HORNIK K,STINCHCOMBE M,WHITE H.Multi-layer Feed-forward Networks Are Universal Approximators[J].Neural Networks,1989,2(5):359-366.
[10]  HURTADO J E,ALVAREZ D A.Neural Network Based Reliability Analysis:A Comparative Study[J].Computer Methods in Applied Mechanics and Engineering,2001,191(1/2):113-132.
[11]  GOMES H M,AWRUCH A M.Comparison of Response Surface and Neural Network with Other Methods for Structural Reliability Analysis[J].Structural Safety,2004,26(1):49-67.
[12]  ADELI H.Neural Networks in Civil Engineering:1989-2000[J].Computer-aided Civil and Infrastructure Engineering,2001,16(2):126-142.
[13]  张建仁,刘 扬.遗传算法和人工神经网络在斜拉桥可靠度分析中的应用[J].土木工程学报,2001,34(1):7-13.
[14]  MELCHERS R E.Importance Sampling in Structural Systems[J].Structural Safety,1989,6(1):3-10.
[15]  YAN Guo-min.Modern Suspension Bridge[M].Beijing:China Communications Press,2002.
[16]  李扬海,鲍卫刚,郭修武,等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.
[17]  LI Yang-hai,BAO Wei-gang,GUO Xiu-wu,et al.Reliability of Highway Bridges and Probability Limit State Design[M].Beijing:China Communications Press,1997.
[18]  陈惟珍,唐 涛,徐 俊.斜拉桥结构体系可靠性评估理论研究进展[J].桥梁建设,2006(4):67-70.
[19]  RAJASHEKHAR M R,ELLINGWOOD B R.A New Look at the Response Surface Approach for Reliability Analysis[J].Structural Safety,1993,12(3):205-220.
[20]  ZHANG Jian-ren,LIU Yang.Reliability Analysis of Cable-stayed Bridge Using GAS and ANN[J].China Civil Engineering Journal,2001,34(1):7-13.
[21]  MCKAY M D,BECKMAN R J,CONOVER W J.A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code[J].Technometrics,1979,21(2):239-245.
[22]  IMAN R L,CONOVER W J.A Distribution Free Approach to Inducing Rank Correlation Among Input Variables[J].Communications in Statistics-Simulation and Computation,1982,11(3):311-334.
[23]  LIU P L,KIUREGHIAN A D.Optimization Algorithms for Structural Reliability[J].Structural Safety,1991,9(3):161-177.
[24]  严国敏.现代悬索桥[M].北京:人民交通出版社,2002.
[25]  ISO 2394:1998,General Principles on Reliability for Structures[S].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133