全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于小波方程的高速公路交通事故自动检测方法

, PP. 106-112

Keywords: 交通工程,事故自动检测,小波方程,自适应阈值,高速公路

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了提高高速公路交通事故检测效率并降低误警率,提出了一种基于小波方程的高速公路交通事故自动检测方法。定义了能够反映占有率和速度累积变化的小波方程,构建了事故检测统计量集合,利用突变值确定了最优检测统计量。考虑到检测阈值在不同交通运行状态下对检测效率的影响,通过引入误警贡献度的概念,建立了期望误警率、检测统计量标准差、误警贡献度间的函数关系,提出了一种检测阈值自适应变化策略。研究结果表明:基于小波方程的事故检测算法具有较高的检测率和较低的误警率、以及更快的平均检测时间,在综合各种交通运行情况下,平均检测率可达到94%,误警率可降至1%;自适应阈值策略对事故检测效率影响显著,对交通运行环境的变化具有较强的适应性。

References

[1]  PAYNE H J,TIGNOR S C.Freeway Incident-detection Algorithms Based on Decision Trees with States[J].Transportation Research Record,1978,682:30-37.
[2]  STEPHANEDES Y,CHASSIAKOS A.Application of Filtering Techniques for Incident Detection[J].Journal of Transportation Engineering,1993,119(1):13-26.
[3]  梁新荣,刘智勇,毛宗源.高速公路动态交通流Elman神经网络模型[J].交通运输工程学报,2006,6(3):92-96. LIANG Xin-rong,LIU Zhi-yong,MAO Zong-yuan.Elman Neural Network Model of Freeway Dynamic Traffic Flow[J].Journal of Traffic and Transportation Engineering,2006,6(3):92-96.
[4]  KADALI B R,RATHI N,PERUMAL V.Evaluation of Pedestrian Mid-block Road Crossing Behaviour Using Artificial Neural Network[J].Journal of Traffic and Transportation Engineering:English Edition,2014,1(2):111-119.
[5]  WANG W,CHEN S,QU G.Incident Detection Algorithm Based on Partial Least Squares Regression[J].Transportation Research Part C,2008,16(1):54-70.
[6]  王武功,马荣国.交通事件检测的加权支持向量机算法[J].长安大学学报:自然科学版,2013,33(6):84-87. WANG Wu-gong,MA Rong-guo.Weighed Support Vector Machine for Traffic Incident Detection[J].Journal of Chang'an University:Natural Science Edition,2013,33(6):84-87.
[7]  陈 斌.基于支持向量机的高速公路意外事件检测模型[J].中国公路学报,2006,19(6):107-112. CHEN Bin.Freeway Accident Detection Model Based on Support Vector Machine[J].China Journal of Highway and Transport,2006,19(6):107-112.
[8]  姚 磊,刘 渊.基于改进模糊聚类与ANFIS的高速公路事件检测[J].计算机工程与应用,2013,49(19):242-245. YAO Lei,LIU Yuan.Freeway Incident Detection Based on Improved Fuzzy Clustering Arithmetic and ANFIS[J].Computer Engineering and Applications,2013,49(19):242-245.
[9]  MAK C L,FAN H S.Algorithm Fusion for Detecting Incidents on Singapore's Central Expressway[J].Journal of Transportation Engineering,2006,132(4):321-330.
[10]  刘 力.基于多传感器信息融合技术的高速公路交通事件检测方法研究[D].北京:北京交通大学,2008. LIU Li.Study on Freeway Traffic Incident Detection Method Based on Multi-sensor Information Fusion Technology[D].Beijing:Beijing Jiaotong University,2008.
[11]  罗向龙,高静怀,牛国宏,等.交通事件小波分解与支持向量机声频识别方法[J].交通运输工程学报,2010,10(2):116-121. LUO Xiang-long,GAO Jing-huai,NIU Guo-hong,et al.Traffic Incident Acoustic Recognition Method Based on Wavelet Decomposition and Support Vector Machine[J].Journal of Traffic and Transportation Engineering,2010,10(2):116-121.
[12]  GHOSH-DASTIDAR S,ADELI H.Wavelet-clustering-neural Network Model for Freeway Incident Detection[J].Computer-aided Civil and Infrastructure Engineering,2003,18(5):325-338.
[13]  KARIM A,ADELI H.Incident Detection Algorithm Using Wavelet Energy Representation of Traffic Patterns[J].Journal of Transportation Engineering,2002,128(3):232-242.
[14]  TENG H,QI Y.Application of Wavelet Technique to Freeway Incident Detection[J].Transportation Research Part C,2003,11(3/4):289-308.
[15]  JEONG Y S,CASTRO-NETO M,JEONG M K,et al.A Wavelet-based Freeway Incident Detection Algorithm with Adapting Threshold Parameters[J].Transportation Research Part C,2009,19(1):1-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133