全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ARIMA与人工神经网络组合模型的交通流预测

, PP. 118-121

Keywords: 交通工程,短期交通流预测,自回归求和滑动平均模型,人工神经网络,时间序列

Full-Text   Cite this paper   Add to My Lib

Abstract:

?将自回归求和滑动平均(ARIMA)与人工神经网络组合模型用于短时交通流预测。利用ARIMA模型良好的线性拟合能力和人工神经网络强大的非线性关系映射能力,把交通流时间序列看成由线性自相关结构和非线性结构两部分组成,采用ARIMA模型对交通流序列的线性部分进行预测,用人工神经网络模型对其非线性残差部分进行预测。结果表明:组合模型的预测准确性高于各自单独使用时的准确性;组合方法发挥了2种模型各自的优势,是短期交通流预测的有效方法。

References

[1]  SHI Qi-xin, ZHENG Wei-zhong.Short-term Traffic Flow Prediction Methods Comparison of Road Networks[J].Journal of Traffic and Transportation Engineering, 2004, 4(4):68-83.
[2]  HAN Chao, SONG Su, WANG Cheng-hong.A Real-time Short-term Traffic Flow Adaptive Forecasting Method Based on ARIMA Model[J].Journal of System Simulation, 2004, 16(7):1 530-1 535.
[3]  SI Bing-feng, SUN Zhuang-zhi, ZHAO Xiao-mei.Mixed Traffic Network Flow-split Model Based on Stochastic User Equilibrium[J].China Journal of Highway and Transport, 2006, 19(1):93-98.
[4]  XIONG Lie-qiang, WANG Fu, LI Jie.Dynamical Model of Traffic Flow on Segment and Its Simulation[J].China Journal of Highway and Transport, 2006, 19(2):91-94.
[5]  HE Guo-guang, LI Yu, MA Shou-feng.Discussion on Short-term Traffic Flow Forecasting Methods Based on Mathematical Models[J].Systems Engineering-Theory & Practice, 2000, 20(12):51-56.
[6]  YANG Li-cai, JIA Lei, KONG Qing-jie, et al.Rough Orthogonal Wavelet Network and Its Applications to the Traffic Flow Forecast[J].Systems Engineering-Theory & Practice, 2005, 25(8):124-129.
[7]  YIN H B, WONG S C, XU J M, et al.Urban Traffic Flow Prediction Using a Fuzzy-neural Approach[J].Transportation Research Part C, 2002, 10(2):85-98.
[8]  VOORT M V D, DOUGHERTY M, WATSON S.Combining Kohonen Maps with ARIMA Time Series Models to Forecast Traffic Flow[J].Transportation Research Part C, 1996, 4(5):307-318.
[9]  GAO Y, ER M J.NARMAX Time Series Model Prediction: Feed-forward and Recurrent Fuzzy Neural Network Approaches[J].Fuzzy Sets and Systems, 2005, 150(2):331-350.
[10]  ZHANG G P.Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[J].Neurocomputing, 2003, 50(1):159-175.
[11]  史其信, 郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报, 2004, 4(4):68-83.
[12]  韩 超, 宋 苏, 王成红.基于ARIMA 模型的短时交通流实时自适应预测系统[J].仿真学报, 2004, 16(7):1 530-1 535.
[13]  四兵锋, 孙壮志, 赵小梅.基于随机用户平衡的混合交通网络流量分离模型[J].中国公路学报, 2006, 19(1):93-98.
[14]  熊烈强, 王 富, 李 杰.路段交通流的动力学模型及其仿真[J].中国公路学报, 2006, 19(2):91-94.
[15]  贺国光, 李 宇, 马寿峰.基于数学模型的短时交通流预测方法探讨[J].系统工程理论与实践, 2000, 20(12):51-56.
[16]  杨立才, 贾 磊, 孔庆杰, 等.粗正交小波网络及其在交通流预测中的应用[J].系统工程理论与实践, 2005, 25(8):124-129.
[17]  TAN Man-chun.Study and Implementation of a Decision Support System for Urban Transit Planning[J].Dynamics of Continuous Discrete and Impulsive Systems Series A, 2005, 13(S1):1 737-1 742.
[18]  SMITH B L, WILLIAMS B M, OSWALD R K.Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting[J].Transportation Research Part C, 2002, 10(4):303-321.
[19]  BATES J M, GRANGER C W J.The Combination of Forecasts[J].Operational Research Quarterly, 1969, 20(1):451-468.
[20]  BOX G E P, JENKINS G M.Time Series Analysis, Forecasting and Control[M].San Francisco:Holden-day, 1970.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133