全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解基于路径的Logit型随机用户均衡模型的新算法

, PP. 100-107

Keywords: 交通工程,随机用户均衡,改进截断牛顿法,预处理共轭梯度法,基路径选取原则

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了更高效地求解Logit型随机用户均衡模型,提出了一种改进的截断牛顿算法,该算法具有超线性的收敛速度。首先运用变量消去法,将Logit型随机用户均衡模型转化为一个无约束的最优化问题,再运用截断牛顿算法求解该最优化问题。在SiouxFalls网络上,对梯度投影法与改进的截断牛顿法进行了对比。计算结果表明:多数情况下,改进的截断牛顿法的计算效率高于梯度投影算法;在拥挤条件下,该算法的优势尤为明显。

References

[1]  SHEFFI Y, POWELL W B.An Algorithm for the Equilibrium Assignment Problem with Random Link Times[J].Networks, 1982, 12(2):191-207.
[2]  MAHER M.Algorithms for Logit-based Stochastic User Equilibrium Assignment[J].Transportation Research Part B, 1998, 32(8):539-549.
[3]  LEURENT F M.Curbing the Computational Difficulty of the Logit Equilibrium Assignment Model[J].Transportation Research Part B, 1997, 31(4):315-326.
[4]  DIAL R B.A Probabilistic Multipath Traffic Assignment Model Which Obviates Path Enumeration[J].Transportation Research, 1971, 5(2):83-111.
[5]  DIAL R B.Equilibrium Logit Traffic Assignment:Elementary Theory and Algorithms[C]//TRB.80th Annual Meeting of Transportation Research Board.Washington DC:TRB, 2001:37-42.
[6]  CHEN M, ALFA A S.Algorithms for Solving Fisk's Stochastic Traffic Assignment Model[J].Transportation Research Part B, 1991, 25(6):405-412.
[7]  BELL M G H.Stochastic User Equilibrium Assignment and Iterative Balancing[C]//DAGANZO C F.Proceedings of the 12th International Symposium on Transportation and Traffic Theory.New York:Elsevier, 1993:427-439.
[8]  DAMBERG O, LUNDGREN J T, PATRIKSSON M.An Algorithm for the Stochastic User Equilibrium Problem[J].Transportation Research Part B, 1996, 30(2):115-131.
[9]  BEKHOR S, TOLEDO T.Investigating Path-based Solution Algorithms to the Stochastic User Equilibrium Problem[J].Transportation Research Part B, 2005, 39(3):279-295.
[10]  BERTSEKAS D P.Nonlinear Programming[M].Nashua:Athena Scientific, 1999.
[11]  BEKHOR S, TOLEDO T, PRASHKER J N.Effects of Choice Set Size and Route Choice Models on Path-based Traffic Assignment[J].Transportmetrica, 2008, 4(2):117-133.
[12]  PRATO C G.Route Choice Modeling:Past, Present and Future Research Directions[J].Journal of Choice Modelling, 2009, 2(1):65-100.
[13]  AZEVEDO J A, SANTOS-COSTA M E O, SILVESTRE-MADEIRA J J E R, et al.An Algorithm for the Ranking of Shortest Paths[J].European Journal of Operational Research, 1993, 69(1):97-106.
[14]  DE-LA-BARRA T, PEREZ B, ANEZ J.Multidimensional Path Search and Assignment[C]//ARRB Group Limited.Proceedings of the 21st PTRC Summer Annual Meeting.Melbourne:ARRB Group Limited, 1993:307-319.
[15]  FISK C.Some Developments in Equilibrium Traffic Assignment[J].Transportation Research Part B, 1980, 14(3):243-255.
[16]  DEMBO R S, STEIHAUG T.Truncated-Newton Algorithms for Large-scale Unconstrained Optimization[J].Mathematical Programming, 1983, 26(2):190-212.
[17]  NASH S G.Preconditioning of Truncated-Newton Methods[J].SIAM Journal on Scientific and Statistical Computing, 1985, 6(3):599-616.
[18]  ARMIJO L.Minimization of Functions Having Lipschitz Continuous First Partial Derivatives[J].Pacific Journal of Mathematics, 1966, 16(1):1-3.
[19]  NOCEDAL J, WRIGHT S J.Numerical Optimization[M].2nd ed.New York:Springer, 2006.
[20]  LEBLANC L J, MORLOK E K, PIERSKALLA W P.An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem[J].Transportation Research, 1975, 9(5):309-318.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133