全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种分数阶微积分算子的有理函数逼近方法

DOI: 10.3724/SP.J.1004.2011.00999, PP. 999-1005

Keywords: 最佳有理逼近,分数阶微积分算子,有理函数构造,算法验证

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于有理函数逼近理论,提出了一种分数阶微积分算子s域最佳有理逼近函数的构造方法.详细讨论了构造最佳有理逼近函数的思路、方法及具体算法.运用最佳有理逼近定义及特征定理,对所构造的分数阶积分算子最佳有理逼近函数进行了验证.其结果表明:该分数阶微积分算子最佳有理逼近函数构造方法是有效的,且对确定的逼近误差及逼近频带,所构造的最佳有理逼近函数能够以最低阶次取得最佳逼近特性.

References

[1]  Li Yuan-Lu, Yu Sheng-Lin. Identification of non-integer order systems in frequency domain. Acta Automatica Sinica, 2007, 33(8): 882-884(李远禄, 于盛林. 非整数阶系统的频域辨识法. 自动化学报, 2007, 33(8): 882-884)
[2]  Pu Yi-Fei, Wang Wei-Xing. Fractional differential masks of digital image and their numerical implementation algorithms. Acta Automatica Sinica, 2007, 33(11): 1128-1135(蒲亦非, 王卫星. 数字图像的分数阶微分掩膜及数值运算规则. 自动化学报, 2007, 33(11): 1128-1135)
[3]  Zhao Hui-Min, Li Wen, Deng Wu. Approximation degree selection for one kind of fractional-order filter. Electric Machines and Control, 2010, 14(1): 90-94(赵慧敏, 李文, 邓武. 一类分数阶滤波器逼近阶次的选择. 电机与控制学报, 2010, 14(1): 90-94)
[4]  Shaher M, Omar K J, Rabha I. Numerical approximations of a dynamic system containing fractional derivatives. Journal of Applied Sciences, 2008, 8(6): 1079-1084
[5]  Hamdaoui K, Charef A. A new discretization method for fractional order differentiators via the bilinear transformation. In: Proceedings of the 15th International Conference on Digital Signal Processing. Cardiff, UK: IEEE, 2007. 280-283
[6]  Tavakoli-Kakhki M, Haeri M. Model reduction in commensurate fractional-order linear systems. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2009, 223(4): 493-505
[7]  Oustaloup A, Levron F, Nanot F, Mathieu B, Nanot F M. Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications, 2000, 47(1): 25-39
[8]  Wang De-Ren, Yang Zhong-Hua. Numerical Approximation Introduction. Beijing: Higher Education Press, 1990. 150-157(王德人, 杨忠华. 数值逼近引论. 北京: 高等教育出版社, 1990. 150-157)
[9]  Li W, Hori Y. Vibration suppression using single neuron-based PI fuzzy controller and fractional-order disturbance observer. IEEE Transactions on Industrial Electronics, 2007, 54(1): 117-126
[10]  Gao Chao-Bang, Zhou Ji-Liu. Image enhancement based on quaternion fractional directional differentiation. Acta Automatica Sinica, 2011, 37(2): 150-159(高朝邦, 周激流. 基于四元数分数阶方向微分的图像增强. 自动化学报, 2011, 37(2): 150-159)
[11]  Ghanbari M, Haeri M. Order and pole locator estimation in fractional order systems using bode diagram. Signal Processing, 2011, 91(2): 191-202
[12]  Ozdemir N, Iskender B B. Fractional order control of fractional diffusion systems subject to input hysteresis. Journal of Computational and Nonlinear Dynamics, 2010, 5(2): 1-5
[13]  Vinagre B M, Podlubny I, Hernandez A, Feliu V. Some approximations of fractional order operators used in control theory and applications. Fractional Calculus and Applied Analysis, 2000, 3(3): 231-248
[14]  Muslim M, Conca C, Nandakumaran A K. Approximation of solutions to fractional integral equation. Computers and Mathematics with Applications, 2010, 59(3): 1236-1244
[15]  Tricaud C, Chen Y Q. An approximate method for numerically solving fractional order optimal control problems of general form. Computers and Mathematics with Applications, 2010, 59(5): 1644-1655
[16]  Madrid A P D, Manoso C, Hernandez R. New direct discretization of the fractional-order differentiator/integrator by the Chebyshev-Pade approximation. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications. Porto, Portugal: Curran Associates, 2006. 166-170
[17]  Santouh Z, Charef A, Assabaa M. Approximation of multiple fractional order systems. Arab Research Institute in Sciences and Engineering, 2007, 3(4): 155-161
[18]  Burden R L, Douglas Faires J. Numerical Analysis (Seventh Edition). Belmont: Thomson Learning, 2001. 512-522

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133