Jain A, Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153-158
[2]
Yu H, Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 2001, 34(10): 2067-2070
[3]
Duda R O, Hart P E, Stork D G. Pattern Classification (Second Edition). New York: John Wiley and Sons, 1997. 94-99
[4]
Wang X Y, Yang J, Teng X L, Xia W J, Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 2007, 28(4): 459-471
[5]
Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1: 211-244
[6]
Carin L, Dobeck G J. Relevance vector machine feature selection and classification for underwater targets. In: Proceedings of the OCEANS. San Diego, USA: IEEE, 2003. 1110-1110
[7]
Girolami M, Rogers S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 2006, 18(8): 1790-1817
[8]
Damoulas T, Girolami M. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics, 2008, 24(10): 1264-1270
[9]
Hou Qing-Yu. Study of Radar Automatic Target Recognition Methods Based on High Resolution Profile [Ph.D. dissertation], Xidian University, China, 2009(侯庆禹. 基于高分辨距离像的雷达自动目标识别方法研究 [博士学位论文], 西安电子科技大学, 中国, 2009)
[10]
Zhang Hai-Juan, Zhang Xiao-Ran, Wen Yan-Qing, Guo Ming-Ming. Using Fisher information matrix to deal with parameter estimation for truncated samples from normal distribution. Journal of Chongqing Technology Business University (Natural Science Edition), 2007, 24(3): 228-229(张海娟, 张晓冉, 温艳清, 郭明明. 用Fisher信息阵处理截断正态分布的参数估计. 重庆工商大学学报(自然科学版), 2007, 24(3): 228-229)
[11]
Nielsen F B. Variational Approach to Factor Analysis and Related Models [Master dissertation], Technical University of Denmark, Denmark, 2004
[12]
Xue Y, Liao X J, Carin L, Krishnapuram B. Multi-task learning for classification with Dirichlet process priors. Journal of Machine Learning Research, 2007, 8: 35-63
[13]
Fodor I K. A Survey of Dimension Reduction Techniques, Technical Report UCRL-ID-148494, Lawrence Livermore National Laboratory, USA, 2002
[14]
Jackson J E. A User's Guide to Principal Component. New York: John Wiley and Sons, 1991
[15]
Mardia K V, Kent J T, Bibby J M. Multivariate Analysis. London: Academic Press, 1980
[16]
Kira K, Rendell L A. The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the 10th National Conference on Artificial Intelligence. California, USA: AAAI, 1992. 129-134
[17]
Tipping M E. The relevance vector machine. Advances in Neural Information Processing Systems 12. Cambridge: The MIT Press, 2000. 652-658
[18]
Bishop C M, Tipping M E. Variational relevance vector machines. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2000. 46-53
[19]
Li D F, Hu W C. Feature selection with RVM and its application to prediction modeling. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2006. 1140-1144
[20]
Zhou X, Wang X, Dougherty E R. Multi-class cancer classification using multinomial probit regression with Bayesian gene selection. IEE Proceedings Systems Biology, 2006, 153(2): 70-78
[21]
Burges C J C. A tutorial on support vector machine for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[22]
Krishnapuram B, Carin L, Figueiredo M A T, Hartemink A J. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 957-968
[23]
Beal M J. Variational Algorithms for Approximate Bayesian Inference [Ph.D. dissertation], London University, UK, 2003
[24]
Bi J B, Bennett K P, Embrechts M, Breneman C, Song M H. Dimensionality reduction via sparse support vector machines. Journal of Machine Learning Research, 2003, 3: 1229-1243
[25]
Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 1997, 30(7): 1145-1159